{"title":"粘弹性拉伸软化材料老化模型","authors":"S. Sathikumar, B. L. Karihaloo, S. G. Reid","doi":"10.1002/(SICI)1099-1484(199801)3:1<27::AID-CFM39>3.0.CO;2-%23","DOIUrl":null,"url":null,"abstract":"<p>An analytical constitutive model similar to the Kelvin chain rheological model associated with solidification theory, is developed for time-dependent tension softening of ageing materials like concrete. The stiffness of spring elements is allowed to vary with time via a function of load bearing volume fraction as in the solidification theory. The development of cracks reduces the load bearing volume fraction with time, so that the overall behaviour of springs is a softening type. A reduction in the load bearing volume with time ensures a gradual reduction in the spring stiffness without violating prescribed retardation times. In some circumstances, depending on the boundary conditions, the stress in a structure can remain unchanged over a period of time. During this period, any cracks in the structure will continue to experience an increased opening due to creep. In other parts of the structure, again depending on the boundary conditions, the crack opening displacements may remain unchanged over a period of time, so that the stress will relax over these parts of the structure. In a large concrete structure, creep and relaxation may be taking place simultaneously in different parts or in the same part but at different times. There is thus a need for a visco-elastic tension softening model for ageing concrete that will cater for both creep and relaxation. © 1998 John Wiley & Sons, Ltd.</p>","PeriodicalId":100899,"journal":{"name":"Mechanics of Cohesive-frictional Materials","volume":"3 1","pages":"27-39"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for ageing visco-elastic tension softening materials\",\"authors\":\"S. Sathikumar, B. L. Karihaloo, S. G. Reid\",\"doi\":\"10.1002/(SICI)1099-1484(199801)3:1<27::AID-CFM39>3.0.CO;2-%23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An analytical constitutive model similar to the Kelvin chain rheological model associated with solidification theory, is developed for time-dependent tension softening of ageing materials like concrete. The stiffness of spring elements is allowed to vary with time via a function of load bearing volume fraction as in the solidification theory. The development of cracks reduces the load bearing volume fraction with time, so that the overall behaviour of springs is a softening type. A reduction in the load bearing volume with time ensures a gradual reduction in the spring stiffness without violating prescribed retardation times. In some circumstances, depending on the boundary conditions, the stress in a structure can remain unchanged over a period of time. During this period, any cracks in the structure will continue to experience an increased opening due to creep. In other parts of the structure, again depending on the boundary conditions, the crack opening displacements may remain unchanged over a period of time, so that the stress will relax over these parts of the structure. In a large concrete structure, creep and relaxation may be taking place simultaneously in different parts or in the same part but at different times. There is thus a need for a visco-elastic tension softening model for ageing concrete that will cater for both creep and relaxation. © 1998 John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":100899,\"journal\":{\"name\":\"Mechanics of Cohesive-frictional Materials\",\"volume\":\"3 1\",\"pages\":\"27-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Cohesive-frictional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28199801%293%3A1%3C27%3A%3AAID-CFM39%3E3.0.CO%3B2-%23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Cohesive-frictional Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-1484%28199801%293%3A1%3C27%3A%3AAID-CFM39%3E3.0.CO%3B2-%23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0