Lennart T. Bach, Veronica Tamsitt, Kimberlee Baldry, Jeffrey McGee, Emmanuel C. Laurenceau-Cornec, Robert F. Strzepek, Yinghuan Xie, Philip W. Boyd
{"title":"确定南大洋铁施肥去除二氧化碳最有效(成本)的区域","authors":"Lennart T. Bach, Veronica Tamsitt, Kimberlee Baldry, Jeffrey McGee, Emmanuel C. Laurenceau-Cornec, Robert F. Strzepek, Yinghuan Xie, Philip W. Boyd","doi":"10.1029/2023GB007754","DOIUrl":null,"url":null,"abstract":"<p>Ocean iron fertilization (OIF) aims to remove carbon dioxide (CO<sub>2</sub>) from the atmosphere by stimulating phytoplankton carbon-fixation and subsequent deep ocean carbon sequestration in iron-limited oceanic regions. Transdisciplinary assessments of OIF have revealed overwhelming challenges around the detection and verification of carbon sequestration and wide-ranging environmental side-effects, thereby dampening enthusiasm for OIF. Here, we utilize five requirements that strongly influence whether OIF can lead to atmospheric CO<sub>2</sub> removal (CDR): The requirement (a) to use preformed nutrients from the lower overturning circulation cell; (b) for prevailing iron-limitation; (c) for sufficient underwater light for photosynthesis; (d) for efficient carbon sequestration; (e) for sufficient air-sea CO<sub>2</sub> transfer. We systematically evaluate these requirements using observational, experimental, and numerical data in an “informed back-of-the-envelope approach” to generate circumpolar maps of OIF (cost-)efficiency south of 60°S. Results suggest that (cost-)efficient CDR is restricted to locations on the Antarctic Shelf. Here, CDR costs can be <100 US$/tonne CO<sub>2</sub> while they are mainly >>1,000 US$/tonne CO<sub>2</sub> in offshore regions of the Southern Ocean, where mesoscale OIF experiments have previously been conducted. However, sensitivity analyses underscore that (cost-)efficiency is in all cases associated with large variability and are thus difficult to predict, which reflects our insufficient understanding of the relevant biogeochemical and physical processes. While OIF implementation on Antarctic shelves appears most (cost-)efficient, it raises legal questions because regions close to Antarctica fall under three overlapping layers of international law. Furthermore, the constraints set by (cost-)efficiency reduce the area suitable for OIF, thereby likely reducing its maximum CDR potential.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007754","citationCount":"0","resultStr":"{\"title\":\"Identifying the Most (Cost-)Efficient Regions for CO2 Removal With Iron Fertilization in the Southern Ocean\",\"authors\":\"Lennart T. Bach, Veronica Tamsitt, Kimberlee Baldry, Jeffrey McGee, Emmanuel C. Laurenceau-Cornec, Robert F. Strzepek, Yinghuan Xie, Philip W. Boyd\",\"doi\":\"10.1029/2023GB007754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ocean iron fertilization (OIF) aims to remove carbon dioxide (CO<sub>2</sub>) from the atmosphere by stimulating phytoplankton carbon-fixation and subsequent deep ocean carbon sequestration in iron-limited oceanic regions. Transdisciplinary assessments of OIF have revealed overwhelming challenges around the detection and verification of carbon sequestration and wide-ranging environmental side-effects, thereby dampening enthusiasm for OIF. Here, we utilize five requirements that strongly influence whether OIF can lead to atmospheric CO<sub>2</sub> removal (CDR): The requirement (a) to use preformed nutrients from the lower overturning circulation cell; (b) for prevailing iron-limitation; (c) for sufficient underwater light for photosynthesis; (d) for efficient carbon sequestration; (e) for sufficient air-sea CO<sub>2</sub> transfer. We systematically evaluate these requirements using observational, experimental, and numerical data in an “informed back-of-the-envelope approach” to generate circumpolar maps of OIF (cost-)efficiency south of 60°S. Results suggest that (cost-)efficient CDR is restricted to locations on the Antarctic Shelf. Here, CDR costs can be <100 US$/tonne CO<sub>2</sub> while they are mainly >>1,000 US$/tonne CO<sub>2</sub> in offshore regions of the Southern Ocean, where mesoscale OIF experiments have previously been conducted. However, sensitivity analyses underscore that (cost-)efficiency is in all cases associated with large variability and are thus difficult to predict, which reflects our insufficient understanding of the relevant biogeochemical and physical processes. While OIF implementation on Antarctic shelves appears most (cost-)efficient, it raises legal questions because regions close to Antarctica fall under three overlapping layers of international law. Furthermore, the constraints set by (cost-)efficiency reduce the area suitable for OIF, thereby likely reducing its maximum CDR potential.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"37 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007754\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007754\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007754","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Identifying the Most (Cost-)Efficient Regions for CO2 Removal With Iron Fertilization in the Southern Ocean
Ocean iron fertilization (OIF) aims to remove carbon dioxide (CO2) from the atmosphere by stimulating phytoplankton carbon-fixation and subsequent deep ocean carbon sequestration in iron-limited oceanic regions. Transdisciplinary assessments of OIF have revealed overwhelming challenges around the detection and verification of carbon sequestration and wide-ranging environmental side-effects, thereby dampening enthusiasm for OIF. Here, we utilize five requirements that strongly influence whether OIF can lead to atmospheric CO2 removal (CDR): The requirement (a) to use preformed nutrients from the lower overturning circulation cell; (b) for prevailing iron-limitation; (c) for sufficient underwater light for photosynthesis; (d) for efficient carbon sequestration; (e) for sufficient air-sea CO2 transfer. We systematically evaluate these requirements using observational, experimental, and numerical data in an “informed back-of-the-envelope approach” to generate circumpolar maps of OIF (cost-)efficiency south of 60°S. Results suggest that (cost-)efficient CDR is restricted to locations on the Antarctic Shelf. Here, CDR costs can be <100 US$/tonne CO2 while they are mainly >>1,000 US$/tonne CO2 in offshore regions of the Southern Ocean, where mesoscale OIF experiments have previously been conducted. However, sensitivity analyses underscore that (cost-)efficiency is in all cases associated with large variability and are thus difficult to predict, which reflects our insufficient understanding of the relevant biogeochemical and physical processes. While OIF implementation on Antarctic shelves appears most (cost-)efficient, it raises legal questions because regions close to Antarctica fall under three overlapping layers of international law. Furthermore, the constraints set by (cost-)efficiency reduce the area suitable for OIF, thereby likely reducing its maximum CDR potential.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.