基于人工神经网络和多元线性回归的α氧化铝力学性能预测模型

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS Glass and Ceramics Pub Date : 2023-11-03 DOI:10.1007/s10717-023-00612-7
H. Belghalem, B. Fissah, M. Djeddou, M. Hamidouche
{"title":"基于人工神经网络和多元线性回归的α氧化铝力学性能预测模型","authors":"H. Belghalem,&nbsp;B. Fissah,&nbsp;M. Djeddou,&nbsp;M. Hamidouche","doi":"10.1007/s10717-023-00612-7","DOIUrl":null,"url":null,"abstract":"<div><div><p>In the present study, we built predictive models of the mechanical properties (Young’s modulus, fracture strength and toughness) of α-Al<sub>2</sub>O<sub>3</sub>. Experiments carried out on samples produced by spark plasma sintering (SPS). The experimental results were the basis for the evaluation of mathematical models and predictions by both the radial basis function neural network (RBFNN) and multiple linear regression (MLR) models. The results of the comparison of MLR and RBFNN models showed good agreement between the experimental data and the RBFNN model predictions whereas the MLR model reveals modest agreement with the studied mechanical properties.</p></div></div>","PeriodicalId":579,"journal":{"name":"Glass and Ceramics","volume":"80 7-8","pages":"347 - 354"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of the Mechanical Properties of Alpha Alumina Using Artificial Neural Networks and Multiple Linear Regression\",\"authors\":\"H. Belghalem,&nbsp;B. Fissah,&nbsp;M. Djeddou,&nbsp;M. Hamidouche\",\"doi\":\"10.1007/s10717-023-00612-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p>In the present study, we built predictive models of the mechanical properties (Young’s modulus, fracture strength and toughness) of α-Al<sub>2</sub>O<sub>3</sub>. Experiments carried out on samples produced by spark plasma sintering (SPS). The experimental results were the basis for the evaluation of mathematical models and predictions by both the radial basis function neural network (RBFNN) and multiple linear regression (MLR) models. The results of the comparison of MLR and RBFNN models showed good agreement between the experimental data and the RBFNN model predictions whereas the MLR model reveals modest agreement with the studied mechanical properties.</p></div></div>\",\"PeriodicalId\":579,\"journal\":{\"name\":\"Glass and Ceramics\",\"volume\":\"80 7-8\",\"pages\":\"347 - 354\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass and Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10717-023-00612-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass and Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10717-023-00612-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们建立了α-Al2O3力学性能(杨氏模量、断裂强度和韧性)的预测模型。对放电等离子烧结(SPS)试样进行了实验研究。实验结果为径向基函数神经网络(RBFNN)和多元线性回归(MLR)模型的数学模型评价和预测提供了基础。MLR和RBFNN模型的比较结果表明,实验数据与RBFNN模型的预测结果吻合较好,而MLR模型与研究的力学性能吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Modeling of the Mechanical Properties of Alpha Alumina Using Artificial Neural Networks and Multiple Linear Regression

In the present study, we built predictive models of the mechanical properties (Young’s modulus, fracture strength and toughness) of α-Al2O3. Experiments carried out on samples produced by spark plasma sintering (SPS). The experimental results were the basis for the evaluation of mathematical models and predictions by both the radial basis function neural network (RBFNN) and multiple linear regression (MLR) models. The results of the comparison of MLR and RBFNN models showed good agreement between the experimental data and the RBFNN model predictions whereas the MLR model reveals modest agreement with the studied mechanical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glass and Ceramics
Glass and Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.00
自引率
16.70%
发文量
85
审稿时长
6-12 weeks
期刊介绍: Glass and Ceramics reports on advances in basic and applied research and plant production techniques in glass and ceramics. The journal''s broad coverage includes developments in the areas of silicate chemistry, mineralogy and metallurgy, crystal chemistry, solid state reactions, raw materials, phase equilibria, reaction kinetics, physicochemical analysis, physics of dielectrics, and refractories, among others.
期刊最新文献
Materials Based on Bioglass 45S5, Doped with Heavy Elements, for Use as Radiosensitizers Application of Sol-Gel Method for Synthesis of Nanostructured Piezoelectric Materials in Lead Zirconate-Titanate System (A Review). Part 2. Synthesis of Film and Rod Structures Properties of Powders Synthesized from Aqueous Solutions of Sodium Silicate and Iron Sulfate Fabrication and Properties of Ceramics/Single Crystal Composites Based on Yttrium Aluminum Garnet Synthesis of Effective Silicate Materials Based on Waste from the Energy Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1