{"title":"线性化无旋流可压缩Navier-Stokes方程解衰减估计的最优性","authors":"Tsukasa Iwabuchi, Dáithí Ó hAodha","doi":"10.1007/s00021-023-00837-0","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss optimal estimates of solutions to the compressible Navier–Stokes equations in Besov norms. In particular, we consider the estimate of the curl-free part of the solution to the linearised equations, in the homogeneous case. We prove that our estimate is optimal in the <span>\\(L^\\infty \\)</span>-norm by showing that the norm is bounded from below by the same decay rate.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00837-0.pdf","citationCount":"2","resultStr":"{\"title\":\"Optimality of the Decay Estimate of Solutions to the Linearised Curl-Free Compressible Navier–Stokes Equations\",\"authors\":\"Tsukasa Iwabuchi, Dáithí Ó hAodha\",\"doi\":\"10.1007/s00021-023-00837-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss optimal estimates of solutions to the compressible Navier–Stokes equations in Besov norms. In particular, we consider the estimate of the curl-free part of the solution to the linearised equations, in the homogeneous case. We prove that our estimate is optimal in the <span>\\\\(L^\\\\infty \\\\)</span>-norm by showing that the norm is bounded from below by the same decay rate.\\n</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00021-023-00837-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00837-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00837-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimality of the Decay Estimate of Solutions to the Linearised Curl-Free Compressible Navier–Stokes Equations
We discuss optimal estimates of solutions to the compressible Navier–Stokes equations in Besov norms. In particular, we consider the estimate of the curl-free part of the solution to the linearised equations, in the homogeneous case. We prove that our estimate is optimal in the \(L^\infty \)-norm by showing that the norm is bounded from below by the same decay rate.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.