R. Bandyopadhyay, C. M. Meyer, W. H. Matthaeus, D. J. McComas, S. R. Cranmer, J. S. Halekas, J. Huang, D. E. Larson, R. Livi, A. Rahmati, P. L. Whittlesey, M. L. Stevens, J. C. Kasper, S. D. Bale
{"title":"质子和电子加热速率的估计扩展到近太阳环境","authors":"R. Bandyopadhyay, C. M. Meyer, W. H. Matthaeus, D. J. McComas, S. R. Cranmer, J. S. Halekas, J. Huang, D. E. Larson, R. Livi, A. Rahmati, P. L. Whittlesey, M. L. Stevens, J. C. Kasper, S. D. Bale","doi":"10.3847/2041-8213/acf85e","DOIUrl":null,"url":null,"abstract":"Abstract A central problem of space plasma physics is how protons and electrons are heated in a turbulent, magnetized plasma. The differential heating of charged species due to dissipation of turbulent fluctuations plays a key role in solar wind evolution. Measurements from previous heliophysics missions have provided estimates of proton and electron heating rates beyond 0.27 au. Using Parker Solar Probe (PSP) data accumulated during the first 10 encounters, we extend the evaluation of the individual rates of heat deposition for protons and electrons to a distance of 0.063 au (13.5 R ⊙ ) in the newly formed solar wind. The PSP data in the near-Sun environment show different behavior of the electron heat conduction flux from what was predicted from previous fits to Helios and Ulysses data. Consequently, the empirically derived proton and electron heating rates exhibit significantly different behavior than previous reports, with the proton heating becoming increasingly dominant over electron heating at decreasing heliocentric distances. We find that the protons receive about 80% of the total plasma heating at ≈13 R ⊙ , slightly higher than the near-Earth values. This empirically derived heating partition between protons and electrons will help to constrain theoretical models of solar wind heating.","PeriodicalId":55567,"journal":{"name":"Astrophysical Journal Letters","volume":"59 1","pages":"0"},"PeriodicalIF":8.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimates of Proton and Electron Heating Rates Extended to the Near-Sun Environment\",\"authors\":\"R. Bandyopadhyay, C. M. Meyer, W. H. Matthaeus, D. J. McComas, S. R. Cranmer, J. S. Halekas, J. Huang, D. E. Larson, R. Livi, A. Rahmati, P. L. Whittlesey, M. L. Stevens, J. C. Kasper, S. D. Bale\",\"doi\":\"10.3847/2041-8213/acf85e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A central problem of space plasma physics is how protons and electrons are heated in a turbulent, magnetized plasma. The differential heating of charged species due to dissipation of turbulent fluctuations plays a key role in solar wind evolution. Measurements from previous heliophysics missions have provided estimates of proton and electron heating rates beyond 0.27 au. Using Parker Solar Probe (PSP) data accumulated during the first 10 encounters, we extend the evaluation of the individual rates of heat deposition for protons and electrons to a distance of 0.063 au (13.5 R ⊙ ) in the newly formed solar wind. The PSP data in the near-Sun environment show different behavior of the electron heat conduction flux from what was predicted from previous fits to Helios and Ulysses data. Consequently, the empirically derived proton and electron heating rates exhibit significantly different behavior than previous reports, with the proton heating becoming increasingly dominant over electron heating at decreasing heliocentric distances. We find that the protons receive about 80% of the total plasma heating at ≈13 R ⊙ , slightly higher than the near-Earth values. This empirically derived heating partition between protons and electrons will help to constrain theoretical models of solar wind heating.\",\"PeriodicalId\":55567,\"journal\":{\"name\":\"Astrophysical Journal Letters\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/acf85e\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acf85e","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
摘要
空间等离子体物理学的一个核心问题是质子和电子如何在湍流磁化等离子体中被加热。由于湍流波动的耗散,带电物质的差异加热在太阳风演化中起着关键作用。以前的太阳物理任务提供了质子和电子加热速率超过0.27 au的估计。利用帕克太阳探测器(PSP)在前10次相遇中积累的数据,我们将新形成的太阳风中质子和电子的单个热沉积速率的评估扩展到0.063 au (13.5 R⊙)的距离。近太阳环境下的PSP数据显示了电子热传导通量的不同行为,这与之前对太阳神号和尤利西斯号数据的拟合预测不同。因此,经验推导的质子和电子加热速率表现出与之前报道的显著不同的行为,随着日心距离的减小,质子加热越来越占主导地位。我们发现质子在≈13 R⊙处接收到约80%的等离子体总热量,略高于近地值。这种经验推导出的质子和电子之间的加热分配将有助于限制太阳风加热的理论模型。
Estimates of Proton and Electron Heating Rates Extended to the Near-Sun Environment
Abstract A central problem of space plasma physics is how protons and electrons are heated in a turbulent, magnetized plasma. The differential heating of charged species due to dissipation of turbulent fluctuations plays a key role in solar wind evolution. Measurements from previous heliophysics missions have provided estimates of proton and electron heating rates beyond 0.27 au. Using Parker Solar Probe (PSP) data accumulated during the first 10 encounters, we extend the evaluation of the individual rates of heat deposition for protons and electrons to a distance of 0.063 au (13.5 R ⊙ ) in the newly formed solar wind. The PSP data in the near-Sun environment show different behavior of the electron heat conduction flux from what was predicted from previous fits to Helios and Ulysses data. Consequently, the empirically derived proton and electron heating rates exhibit significantly different behavior than previous reports, with the proton heating becoming increasingly dominant over electron heating at decreasing heliocentric distances. We find that the protons receive about 80% of the total plasma heating at ≈13 R ⊙ , slightly higher than the near-Earth values. This empirically derived heating partition between protons and electrons will help to constrain theoretical models of solar wind heating.
期刊介绍:
The Astrophysical Journal Letters (ApJL) is widely regarded as the foremost journal for swiftly disseminating groundbreaking astronomical research. It focuses on concise reports that highlight pivotal advancements in the field of astrophysics. By prioritizing timeliness and the generation of immediate interest among researchers, ApJL showcases articles featuring novel discoveries and critical findings that have a profound effect on the scientific community. Moreover, ApJL ensures that published articles are comprehensive in their scope, presenting context that can be readily comprehensible to scientists who may not possess expertise in the specific disciplines covered.