{"title":"高矫顽力Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub>粉","authors":"Shusuke OKADA, Kenta TAKAGI, Ryuji HASHIMOTO","doi":"10.2497/jjspm.23-00029","DOIUrl":null,"url":null,"abstract":"In this paper, we report on our group’s efforts to improve the coercivity of Sm2Fe17N3 powder, especially on reducing the particle size to submicron scale, smoothing the particle surface, and suppression of the formation of coarse particles by developing a new reduction-diffusion process. During the course of a series of these works, it was revealed that the washing step, which is performed to remove excess Ca, supplied hydrogen into the Sm2Fe17N3 crystal structure, and induced unfavorable elongation of the crystal structure along the c-axis. To avoid this problem, the powders were subjected to dehydrogenation treatment, demonstrating reasonably high coercivity values that we expect from the known relationship between particle size and coercivity. It was also found that the conventional dissolution and the removal of impurities by acetic acid were roughening the particle surfaces. Thus, development of an alternative process to acetic acid cleaning prevented the surface roughening and showed the further improvement of the coercivity. Finally, the development of a new uniform reduction-diffusion reaction using a rotary furnace brought about a breakthrough for further improvement of coercivity by suppressing the formation of coarse particles. As a result, we succeeded in synthesizing Sm2Fe17N3 anisotropic powder with an ultra-high coercivity (i.e. the current world record) of 31.7 kOe, and also showed that the powder can maintain a coercivity higher than 10 kOe at 200°C.","PeriodicalId":35600,"journal":{"name":"Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of High Coercivity Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub> Powder\",\"authors\":\"Shusuke OKADA, Kenta TAKAGI, Ryuji HASHIMOTO\",\"doi\":\"10.2497/jjspm.23-00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report on our group’s efforts to improve the coercivity of Sm2Fe17N3 powder, especially on reducing the particle size to submicron scale, smoothing the particle surface, and suppression of the formation of coarse particles by developing a new reduction-diffusion process. During the course of a series of these works, it was revealed that the washing step, which is performed to remove excess Ca, supplied hydrogen into the Sm2Fe17N3 crystal structure, and induced unfavorable elongation of the crystal structure along the c-axis. To avoid this problem, the powders were subjected to dehydrogenation treatment, demonstrating reasonably high coercivity values that we expect from the known relationship between particle size and coercivity. It was also found that the conventional dissolution and the removal of impurities by acetic acid were roughening the particle surfaces. Thus, development of an alternative process to acetic acid cleaning prevented the surface roughening and showed the further improvement of the coercivity. Finally, the development of a new uniform reduction-diffusion reaction using a rotary furnace brought about a breakthrough for further improvement of coercivity by suppressing the formation of coarse particles. As a result, we succeeded in synthesizing Sm2Fe17N3 anisotropic powder with an ultra-high coercivity (i.e. the current world record) of 31.7 kOe, and also showed that the powder can maintain a coercivity higher than 10 kOe at 200°C.\",\"PeriodicalId\":35600,\"journal\":{\"name\":\"Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2497/jjspm.23-00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2497/jjspm.23-00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Synthesis of High Coercivity Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub> Powder
In this paper, we report on our group’s efforts to improve the coercivity of Sm2Fe17N3 powder, especially on reducing the particle size to submicron scale, smoothing the particle surface, and suppression of the formation of coarse particles by developing a new reduction-diffusion process. During the course of a series of these works, it was revealed that the washing step, which is performed to remove excess Ca, supplied hydrogen into the Sm2Fe17N3 crystal structure, and induced unfavorable elongation of the crystal structure along the c-axis. To avoid this problem, the powders were subjected to dehydrogenation treatment, demonstrating reasonably high coercivity values that we expect from the known relationship between particle size and coercivity. It was also found that the conventional dissolution and the removal of impurities by acetic acid were roughening the particle surfaces. Thus, development of an alternative process to acetic acid cleaning prevented the surface roughening and showed the further improvement of the coercivity. Finally, the development of a new uniform reduction-diffusion reaction using a rotary furnace brought about a breakthrough for further improvement of coercivity by suppressing the formation of coarse particles. As a result, we succeeded in synthesizing Sm2Fe17N3 anisotropic powder with an ultra-high coercivity (i.e. the current world record) of 31.7 kOe, and also showed that the powder can maintain a coercivity higher than 10 kOe at 200°C.