土地利用对巴西亚马孙南部两个流域土壤物理水文属性的影响

IF 2.9 Q2 SOIL SCIENCE Soil Systems Pub Date : 2023-11-14 DOI:10.3390/soilsystems7040103
Francielli Aloisio Moratelli, Marco Aurélio Barbosa Alves, Daniela Roberta Borella, Aline Kraeski, Frederico Terra de Almeida, Cornélio Alberto Zolin, Aaron Kinyu Hoshide, Adilson Pacheco de Souza
{"title":"土地利用对巴西亚马孙南部两个流域土壤物理水文属性的影响","authors":"Francielli Aloisio Moratelli, Marco Aurélio Barbosa Alves, Daniela Roberta Borella, Aline Kraeski, Frederico Terra de Almeida, Cornélio Alberto Zolin, Aaron Kinyu Hoshide, Adilson Pacheco de Souza","doi":"10.3390/soilsystems7040103","DOIUrl":null,"url":null,"abstract":"Changes in land use can cause degradation of soil physical quality with negative effects on the environment and agricultural production. The effects of different land uses on soil physical-hydric attributes were studied in the Renato River and Caiabi River watersheds in the southern Brazilian Amazon. Three conditions of land use were evaluated: native forest, crops, and pasture in the headwater, middle, and mouth of each watershed. Particle size, particle density, bulk density, total porosity, macroporosity, microporosity, water contents at field capacity and permanent wilting point, and available water capacity in soil were evaluated in three soil layers down to 0.4 m. Data collected were subjected to the Kruskal–Wallis nonparametric test and Pearson’s correlations. Multivariate analyses were also performed using the principal component method. In the Renato watershed, in comparison with native forest, conventional management of pasture and crops caused soil physical degradation, increasing soil density in the surface layer and reducing macroporosity and total porosity. In the Caiabi watershed, converting native forest areas into pasture and crops altered water quality, influencing the water dynamics in the soil, by reducing soil water conductivity. Soil attributes varied by watershed, with texture variations between the headwater and mouth, indicating that changes in soil properties result from both management and the granulometric composition of the soil in different regions of the same watershed. Adoption of crop and pasture conservation practices can improve soil physical attributes in regions bordering agricultural areas in the southern Amazon.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":"78 23","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Land Use on Soil Physical-Hydric Attributes in Two Watersheds in the Southern Amazon, Brazil\",\"authors\":\"Francielli Aloisio Moratelli, Marco Aurélio Barbosa Alves, Daniela Roberta Borella, Aline Kraeski, Frederico Terra de Almeida, Cornélio Alberto Zolin, Aaron Kinyu Hoshide, Adilson Pacheco de Souza\",\"doi\":\"10.3390/soilsystems7040103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in land use can cause degradation of soil physical quality with negative effects on the environment and agricultural production. The effects of different land uses on soil physical-hydric attributes were studied in the Renato River and Caiabi River watersheds in the southern Brazilian Amazon. Three conditions of land use were evaluated: native forest, crops, and pasture in the headwater, middle, and mouth of each watershed. Particle size, particle density, bulk density, total porosity, macroporosity, microporosity, water contents at field capacity and permanent wilting point, and available water capacity in soil were evaluated in three soil layers down to 0.4 m. Data collected were subjected to the Kruskal–Wallis nonparametric test and Pearson’s correlations. Multivariate analyses were also performed using the principal component method. In the Renato watershed, in comparison with native forest, conventional management of pasture and crops caused soil physical degradation, increasing soil density in the surface layer and reducing macroporosity and total porosity. In the Caiabi watershed, converting native forest areas into pasture and crops altered water quality, influencing the water dynamics in the soil, by reducing soil water conductivity. Soil attributes varied by watershed, with texture variations between the headwater and mouth, indicating that changes in soil properties result from both management and the granulometric composition of the soil in different regions of the same watershed. Adoption of crop and pasture conservation practices can improve soil physical attributes in regions bordering agricultural areas in the southern Amazon.\",\"PeriodicalId\":21908,\"journal\":{\"name\":\"Soil Systems\",\"volume\":\"78 23\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/soilsystems7040103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土地利用的变化会导致土壤物理质量的退化,对环境和农业生产产生负面影响。研究了巴西南部亚马逊河流域雷纳托河和Caiabi河流域不同土地利用方式对土壤物理水文属性的影响。评估了三种土地利用条件:原生林、作物和各流域源、中、口的牧场。在0.4 m以下的3个土层中,对土壤的粒径、颗粒密度、容重、总孔隙度、大孔隙度、微孔隙度、田间容量含水量、永久萎蔫点含水量和有效水量进行了评价。收集的数据进行Kruskal-Wallis非参数检验和Pearson相关检验。采用主成分法进行多变量分析。在雷纳托流域,与原生林相比,放牧和作物的常规管理导致土壤物理退化,表层土壤密度增加,宏观孔隙度和总孔隙度降低。在Caiabi流域,将原始森林地区转变为牧场和作物改变了水质,通过降低土壤水分传导性影响了土壤中的水分动态。土壤属性因流域而异,在源头和河口之间存在质地差异,表明土壤属性的变化是由同一流域不同区域的管理和土壤颗粒组成共同造成的。采用作物和牧场保护措施可以改善亚马逊南部与农业区接壤地区的土壤物理属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Land Use on Soil Physical-Hydric Attributes in Two Watersheds in the Southern Amazon, Brazil
Changes in land use can cause degradation of soil physical quality with negative effects on the environment and agricultural production. The effects of different land uses on soil physical-hydric attributes were studied in the Renato River and Caiabi River watersheds in the southern Brazilian Amazon. Three conditions of land use were evaluated: native forest, crops, and pasture in the headwater, middle, and mouth of each watershed. Particle size, particle density, bulk density, total porosity, macroporosity, microporosity, water contents at field capacity and permanent wilting point, and available water capacity in soil were evaluated in three soil layers down to 0.4 m. Data collected were subjected to the Kruskal–Wallis nonparametric test and Pearson’s correlations. Multivariate analyses were also performed using the principal component method. In the Renato watershed, in comparison with native forest, conventional management of pasture and crops caused soil physical degradation, increasing soil density in the surface layer and reducing macroporosity and total porosity. In the Caiabi watershed, converting native forest areas into pasture and crops altered water quality, influencing the water dynamics in the soil, by reducing soil water conductivity. Soil attributes varied by watershed, with texture variations between the headwater and mouth, indicating that changes in soil properties result from both management and the granulometric composition of the soil in different regions of the same watershed. Adoption of crop and pasture conservation practices can improve soil physical attributes in regions bordering agricultural areas in the southern Amazon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Systems
Soil Systems Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
5.30
自引率
5.70%
发文量
80
审稿时长
11 weeks
期刊最新文献
Structural Shifts in the Soil Prokaryotic Communities Marking the Podzol-Forming Process on Sand Dumps Soil Phytomining: Recent Developments—A Review Selenium and Heavy Metals in Soil–Plant System in a Hydrogeochemical Province with High Selenium Content in Groundwater: A Case Study of the Lower Dniester Valley Tillage and Cover Crop Systems Alter Soil Particle Size Distribution in Raised-Bed-and-Furrow Row-Crop Agroecosystems Shifts in Soil Bacterial Communities under Three-Year Fertilization Management and Multiple Cropping Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1