水处理厂反渗透的碳足迹是什么?系统评价方案

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-11-14 DOI:10.1186/s13750-023-00316-z
Samaneh Abolli, Esfandiar Ghordouei Milan, Parnia Bashardoust, Mahmood Alimohammadi
{"title":"水处理厂反渗透的碳足迹是什么?系统评价方案","authors":"Samaneh Abolli, Esfandiar Ghordouei Milan, Parnia Bashardoust, Mahmood Alimohammadi","doi":"10.1186/s13750-023-00316-z","DOIUrl":null,"url":null,"abstract":"Abstract Background “Carbon footprint” (CF) is a direct measure of greenhouse gas emissions caused by a defined activity and can demonstrate global warming effects. The emissions of Greenhouse gases (GHGs) in water projects start from the primary water sources, followed by transportation, construction, and operation phases in the final treatment plants. Due to their possible environmental impacts, the water treatment plants equipped with Reverse Osmosis (RO) units will be investigated for their carbon footprint. Methods The research question is “What is the carbon footprint of reverse osmosis in water treatment plants?”. The literature search in this study will be divided into two sequential sections; in the first section, the search will be limited to Scopus, Science Direct, EMBASE, and PubMed databases. The keywords of water, “water treatment plants”, “water purification”, desalination, “reverse osmosis”, RO, “carbon emission”, “carbon dioxide/CO 2 emission”, “carbon footprint”, “Life Cycle Assessment” and, LCA will be used. The carbon footprint of RO will be expressed based on the direct and indirect effects based on RO capacity. In the second section, the internet and specialist search will be done, and the search will be updated. No date limitation will be considered, and the main search will be done in English. When the search is completed, the screening will be performed. After removing duplicates, the title and abstract will be examined. The full text will be read if the title and abstract are not helpful for decision-making. In addition, the bibliography and references will proceed after the full-text screening. The Collaboration for Environmental Evidence (CEE) Critical Appraisal Tool will be used for risk of bias checking and study validity assessment. After full-text evaluation, data will be collected and categorized by two authors. If there is enough data, meta-analysis will be performed. Systematic review registration PROSPERO CRD42022327572.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the carbon footprint of reverse osmosis in water treatment plants? A systematic review protocol\",\"authors\":\"Samaneh Abolli, Esfandiar Ghordouei Milan, Parnia Bashardoust, Mahmood Alimohammadi\",\"doi\":\"10.1186/s13750-023-00316-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background “Carbon footprint” (CF) is a direct measure of greenhouse gas emissions caused by a defined activity and can demonstrate global warming effects. The emissions of Greenhouse gases (GHGs) in water projects start from the primary water sources, followed by transportation, construction, and operation phases in the final treatment plants. Due to their possible environmental impacts, the water treatment plants equipped with Reverse Osmosis (RO) units will be investigated for their carbon footprint. Methods The research question is “What is the carbon footprint of reverse osmosis in water treatment plants?”. The literature search in this study will be divided into two sequential sections; in the first section, the search will be limited to Scopus, Science Direct, EMBASE, and PubMed databases. The keywords of water, “water treatment plants”, “water purification”, desalination, “reverse osmosis”, RO, “carbon emission”, “carbon dioxide/CO 2 emission”, “carbon footprint”, “Life Cycle Assessment” and, LCA will be used. The carbon footprint of RO will be expressed based on the direct and indirect effects based on RO capacity. In the second section, the internet and specialist search will be done, and the search will be updated. No date limitation will be considered, and the main search will be done in English. When the search is completed, the screening will be performed. After removing duplicates, the title and abstract will be examined. The full text will be read if the title and abstract are not helpful for decision-making. In addition, the bibliography and references will proceed after the full-text screening. The Collaboration for Environmental Evidence (CEE) Critical Appraisal Tool will be used for risk of bias checking and study validity assessment. After full-text evaluation, data will be collected and categorized by two authors. If there is enough data, meta-analysis will be performed. Systematic review registration PROSPERO CRD42022327572.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13750-023-00316-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13750-023-00316-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要背景“碳足迹”(Carbon footprint, CF)是对特定活动造成的温室气体排放的直接度量,可以证明全球变暖效应。水工程的温室气体排放从主要水源开始,然后是最终处理厂的运输、建设和运营阶段。由于可能对环境造成影响,将对配备反渗透(RO)装置的水处理厂的碳足迹进行调查。方法以“什么是水处理厂反渗透的碳足迹”为研究问题。本研究的文献检索将分为两个顺序部分;在第一部分中,搜索将仅限于Scopus、Science Direct、EMBASE和PubMed数据库。关键词:水,“水处理厂”,“水净化”,海水淡化,“反渗透”,反渗透,“碳排放”,“二氧化碳/二氧化碳排放”,“碳足迹”,“生命周期评估”和LCA将被使用。RO的碳足迹将根据RO容量的直接和间接影响来表示。在第二部分,互联网和专家搜索将完成,搜索将更新。没有日期限制将被考虑,主要搜索将在英语中完成。搜索完成后,将进行筛选。删除重复后,将对标题和摘要进行检查。如果标题和摘要对决策没有帮助,将阅读全文。此外,参考书目和参考文献将在全文筛选后进行。环境证据协作(CEE)关键评估工具将用于偏倚风险检查和研究效度评估。全文评审后,由两位作者进行数据收集和分类。如果有足够的数据,将进行meta分析。系统评价注册号PROSPERO CRD42022327572。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What is the carbon footprint of reverse osmosis in water treatment plants? A systematic review protocol
Abstract Background “Carbon footprint” (CF) is a direct measure of greenhouse gas emissions caused by a defined activity and can demonstrate global warming effects. The emissions of Greenhouse gases (GHGs) in water projects start from the primary water sources, followed by transportation, construction, and operation phases in the final treatment plants. Due to their possible environmental impacts, the water treatment plants equipped with Reverse Osmosis (RO) units will be investigated for their carbon footprint. Methods The research question is “What is the carbon footprint of reverse osmosis in water treatment plants?”. The literature search in this study will be divided into two sequential sections; in the first section, the search will be limited to Scopus, Science Direct, EMBASE, and PubMed databases. The keywords of water, “water treatment plants”, “water purification”, desalination, “reverse osmosis”, RO, “carbon emission”, “carbon dioxide/CO 2 emission”, “carbon footprint”, “Life Cycle Assessment” and, LCA will be used. The carbon footprint of RO will be expressed based on the direct and indirect effects based on RO capacity. In the second section, the internet and specialist search will be done, and the search will be updated. No date limitation will be considered, and the main search will be done in English. When the search is completed, the screening will be performed. After removing duplicates, the title and abstract will be examined. The full text will be read if the title and abstract are not helpful for decision-making. In addition, the bibliography and references will proceed after the full-text screening. The Collaboration for Environmental Evidence (CEE) Critical Appraisal Tool will be used for risk of bias checking and study validity assessment. After full-text evaluation, data will be collected and categorized by two authors. If there is enough data, meta-analysis will be performed. Systematic review registration PROSPERO CRD42022327572.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1