应用标准非线性实体材料模型模拟冈上肌腱的拉伸行为

Q2 Materials Science Engineering Solid Mechanics Pub Date : 2023-01-01 DOI:10.5267/j.esm.2022.8.004
Harry Ngwangwa, Thanyani Pandelani, Fulufhelo Nemavhola
{"title":"应用标准非线性实体材料模型模拟冈上肌腱的拉伸行为","authors":"Harry Ngwangwa, Thanyani Pandelani, Fulufhelo Nemavhola","doi":"10.5267/j.esm.2022.8.004","DOIUrl":null,"url":null,"abstract":"Tendons transmit forces from muscles to bones through joints. Typically, tendons and muscles work together to innovate a motion. In addition, tendons are often subjected to much higher stresses than the muscles that they serve in any given action. As a result, tendons are susceptible to injuries that may lead to a permanent dysfunction in joint mobility due to the fact that the scar tissue that forms after healing often does not have the same mechanical properties of the original tissue. It is therefore very important to understand the mechanical response of tendons. In this paper the performances are examined of two viscoelastic standard nonlinear models in modelling the elastic and plastic behaviour of the tendon in the light of a well-known hyperelastic Yeoh model. The use of the Yeoh model is more for validating the performances of the viscoelastic models within the elastic region than for comparison purposes. The Yeoh model was selected based on its superior performance in modelling the elastic phase of soft tissue, as reported in previous studies, combined with its simplicity. The results show that the two standard nonlinear solid models perform extremely well both in fitting accuracies and in correlating stress results. The most promising result is the fact that the two standard nonlinear models can model tendon behaviour in the nonlinear plastic region. It is also noted that the two standard nonlinear models are physically insightful since their optimisation parameters can easily be interpreted in terms of tendon elasticity and viscoelastic parameters.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The application of standard nonlinear solid material models in modelling the tensile behaviour of the supraspinatus tendon\",\"authors\":\"Harry Ngwangwa, Thanyani Pandelani, Fulufhelo Nemavhola\",\"doi\":\"10.5267/j.esm.2022.8.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tendons transmit forces from muscles to bones through joints. Typically, tendons and muscles work together to innovate a motion. In addition, tendons are often subjected to much higher stresses than the muscles that they serve in any given action. As a result, tendons are susceptible to injuries that may lead to a permanent dysfunction in joint mobility due to the fact that the scar tissue that forms after healing often does not have the same mechanical properties of the original tissue. It is therefore very important to understand the mechanical response of tendons. In this paper the performances are examined of two viscoelastic standard nonlinear models in modelling the elastic and plastic behaviour of the tendon in the light of a well-known hyperelastic Yeoh model. The use of the Yeoh model is more for validating the performances of the viscoelastic models within the elastic region than for comparison purposes. The Yeoh model was selected based on its superior performance in modelling the elastic phase of soft tissue, as reported in previous studies, combined with its simplicity. The results show that the two standard nonlinear solid models perform extremely well both in fitting accuracies and in correlating stress results. The most promising result is the fact that the two standard nonlinear models can model tendon behaviour in the nonlinear plastic region. It is also noted that the two standard nonlinear models are physically insightful since their optimisation parameters can easily be interpreted in terms of tendon elasticity and viscoelastic parameters.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2022.8.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.8.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

肌腱通过关节将力量从肌肉传递到骨骼。通常,肌腱和肌肉一起工作来创造一个动作。此外,在任何给定的动作中,肌腱通常比肌肉承受更大的压力。因此,由于愈合后形成的疤痕组织通常不具有与原始组织相同的机械特性,肌腱容易受到损伤,可能导致关节活动永久性功能障碍。因此,了解肌腱的力学响应是非常重要的。本文以著名的超弹性杨氏模型为基础,研究了两种粘弹性标准非线性模型在模拟肌腱弹塑性特性方面的性能。Yeoh模型的使用更多的是为了验证弹性区域内粘弹性模型的性能,而不是为了比较目的。选择Yeoh模型是基于其在模拟软组织弹性阶段方面的优越性能,正如之前的研究所报道的那样,再加上它的简单性。结果表明,两种标准非线性实体模型在拟合精度和相关应力结果方面都有很好的表现。最有希望的结果是,这两个标准非线性模型可以模拟非线性塑性区域的肌腱行为。还注意到,这两个标准非线性模型具有物理洞察力,因为它们的优化参数可以很容易地用肌腱弹性和粘弹性参数来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of standard nonlinear solid material models in modelling the tensile behaviour of the supraspinatus tendon
Tendons transmit forces from muscles to bones through joints. Typically, tendons and muscles work together to innovate a motion. In addition, tendons are often subjected to much higher stresses than the muscles that they serve in any given action. As a result, tendons are susceptible to injuries that may lead to a permanent dysfunction in joint mobility due to the fact that the scar tissue that forms after healing often does not have the same mechanical properties of the original tissue. It is therefore very important to understand the mechanical response of tendons. In this paper the performances are examined of two viscoelastic standard nonlinear models in modelling the elastic and plastic behaviour of the tendon in the light of a well-known hyperelastic Yeoh model. The use of the Yeoh model is more for validating the performances of the viscoelastic models within the elastic region than for comparison purposes. The Yeoh model was selected based on its superior performance in modelling the elastic phase of soft tissue, as reported in previous studies, combined with its simplicity. The results show that the two standard nonlinear solid models perform extremely well both in fitting accuracies and in correlating stress results. The most promising result is the fact that the two standard nonlinear models can model tendon behaviour in the nonlinear plastic region. It is also noted that the two standard nonlinear models are physically insightful since their optimisation parameters can easily be interpreted in terms of tendon elasticity and viscoelastic parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
期刊最新文献
Combined hardening parameters of high strength steel under low cycle fatigue Design modification and performance evaluation of mini-hydrostatic pressure apparatus for inclined plane circular surface Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures- An experimental study using the SCB test Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1