一种基于CNN结构的抗变差人脸识别组合方法

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-11-14 DOI:10.32985/ijeces.14.9.4
Hicham Benradi, Ahmed Chater, Abdelali Lasfar
{"title":"一种基于CNN结构的抗变差人脸识别组合方法","authors":"Hicham Benradi, Ahmed Chater, Abdelali Lasfar","doi":"10.32985/ijeces.14.9.4","DOIUrl":null,"url":null,"abstract":"Identifying individuals from a facial image is a technique that forms part of computer vision and is used in various fields such as security, digital biometrics, smartphones, and banking. However, it can prove difficult due to the complexity of facial structure and the presence of variations that can affect the results. To overcome this difficulty, in this paper, we propose a combined approach that aims to improve the accuracy and robustness of facial recognition in the presence of variations. To this end, two datasets (ORL and UMIST) are used to train our model. We then began with the image pre-processing phase, which consists in applying a histogram equalization operation to adjust the gray levels over the entire image surface to improve quality and enhance the detection of features in each image. Next, the least important features are eliminated from the images using the Principal Component Analysis (PCA) method. Finally, the pre-processed images are subjected to a neural network architecture (CNN) consisting of multiple convolution layers and fully connected layers. Our simulation results show a high performance of our approach, with accuracy rates of up to 99.50% for the ORL dataset and 100% for the UMIST dataset.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"46 16","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined method based on CNN architecture for variation-resistant facial recognition\",\"authors\":\"Hicham Benradi, Ahmed Chater, Abdelali Lasfar\",\"doi\":\"10.32985/ijeces.14.9.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying individuals from a facial image is a technique that forms part of computer vision and is used in various fields such as security, digital biometrics, smartphones, and banking. However, it can prove difficult due to the complexity of facial structure and the presence of variations that can affect the results. To overcome this difficulty, in this paper, we propose a combined approach that aims to improve the accuracy and robustness of facial recognition in the presence of variations. To this end, two datasets (ORL and UMIST) are used to train our model. We then began with the image pre-processing phase, which consists in applying a histogram equalization operation to adjust the gray levels over the entire image surface to improve quality and enhance the detection of features in each image. Next, the least important features are eliminated from the images using the Principal Component Analysis (PCA) method. Finally, the pre-processed images are subjected to a neural network architecture (CNN) consisting of multiple convolution layers and fully connected layers. Our simulation results show a high performance of our approach, with accuracy rates of up to 99.50% for the ORL dataset and 100% for the UMIST dataset.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"46 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.9.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

从面部图像中识别个人是一种技术,构成了计算机视觉的一部分,并用于各种领域,如安全、数字生物识别、智能手机和银行。然而,由于面部结构的复杂性和可能影响结果的变异的存在,这可能证明是困难的。为了克服这一困难,在本文中,我们提出了一种组合方法,旨在提高存在变化的面部识别的准确性和鲁棒性。为此,使用两个数据集(ORL和UMIST)来训练我们的模型。然后,我们从图像预处理阶段开始,该阶段包括应用直方图均衡化操作来调整整个图像表面的灰度级别,以提高质量并增强每个图像中的特征检测。接下来,使用主成分分析(PCA)方法从图像中消除最不重要的特征。最后,对预处理后的图像进行由多个卷积层和全连接层组成的神经网络结构(CNN)处理。我们的仿真结果显示了我们的方法的高性能,ORL数据集的准确率高达99.50%,UMIST数据集的准确率高达100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A combined method based on CNN architecture for variation-resistant facial recognition
Identifying individuals from a facial image is a technique that forms part of computer vision and is used in various fields such as security, digital biometrics, smartphones, and banking. However, it can prove difficult due to the complexity of facial structure and the presence of variations that can affect the results. To overcome this difficulty, in this paper, we propose a combined approach that aims to improve the accuracy and robustness of facial recognition in the presence of variations. To this end, two datasets (ORL and UMIST) are used to train our model. We then began with the image pre-processing phase, which consists in applying a histogram equalization operation to adjust the gray levels over the entire image surface to improve quality and enhance the detection of features in each image. Next, the least important features are eliminated from the images using the Principal Component Analysis (PCA) method. Finally, the pre-processed images are subjected to a neural network architecture (CNN) consisting of multiple convolution layers and fully connected layers. Our simulation results show a high performance of our approach, with accuracy rates of up to 99.50% for the ORL dataset and 100% for the UMIST dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1