基于安全路由的无线传感器网络信任与能量感知路由协议

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-11-14 DOI:10.32985/ijeces.14.9.6
Muneeswari G., Ahilan A., Rajeshwari R, Kannan K., John Clement Singh C.
{"title":"基于安全路由的无线传感器网络信任与能量感知路由协议","authors":"Muneeswari G., Ahilan A., Rajeshwari R, Kannan K., John Clement Singh C.","doi":"10.32985/ijeces.14.9.6","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Network (WSN) is a network area that includes a large number of nodes and the ability of wireless transmission. WSNs are frequently employed for vital applications in which security and dependability are of utmost concern. The main objective of the proposed method is to design a WSN to maximize network longevity while minimizing power usage. In a WSN, trust management is employed to encourage node collaboration, which is crucial for achieving dependable transmission. In this research, a novel Trust and Energy Aware Routing Protocol (TEARP) in wireless sensors networks is proposed, which use blockchain technology to maintain the identity of the Sensor Nodes (SNs) and Aggregator Nodes (ANs). The proposed TEARP technique provides a thorough trust value for nodes based on their direct trust values and the filtering mechanisms generate the indirect trust values. Further, an enhanced threshold technique is employed to identify the most appropriate clustering heads based on dynamic changes in the extensive trust values and residual energy of the networks. Lastly, cluster heads should be routed in a secure manner using a Sand Cat Swarm Optimization Algorithm (SCSOA). The proposed method has been evaluated using specific parameters such as Network Lifetime, Residual Energy, Throughpu,t Packet Delivery Ratio, and Detection Accuracy respectively. The proposed TEARP method improves the network lifetime by 39.64%, 33.05%, and 27.16%, compared with Energy-efficient and Secure Routing (ESR), Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (MOSFA) , and Optimal Support Vector Machine (OSVM).","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"46 12","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trust And Energy-Aware Routing Protocol for Wireless Sensor Networks Based on Secure Routing\",\"authors\":\"Muneeswari G., Ahilan A., Rajeshwari R, Kannan K., John Clement Singh C.\",\"doi\":\"10.32985/ijeces.14.9.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Sensor Network (WSN) is a network area that includes a large number of nodes and the ability of wireless transmission. WSNs are frequently employed for vital applications in which security and dependability are of utmost concern. The main objective of the proposed method is to design a WSN to maximize network longevity while minimizing power usage. In a WSN, trust management is employed to encourage node collaboration, which is crucial for achieving dependable transmission. In this research, a novel Trust and Energy Aware Routing Protocol (TEARP) in wireless sensors networks is proposed, which use blockchain technology to maintain the identity of the Sensor Nodes (SNs) and Aggregator Nodes (ANs). The proposed TEARP technique provides a thorough trust value for nodes based on their direct trust values and the filtering mechanisms generate the indirect trust values. Further, an enhanced threshold technique is employed to identify the most appropriate clustering heads based on dynamic changes in the extensive trust values and residual energy of the networks. Lastly, cluster heads should be routed in a secure manner using a Sand Cat Swarm Optimization Algorithm (SCSOA). The proposed method has been evaluated using specific parameters such as Network Lifetime, Residual Energy, Throughpu,t Packet Delivery Ratio, and Detection Accuracy respectively. The proposed TEARP method improves the network lifetime by 39.64%, 33.05%, and 27.16%, compared with Energy-efficient and Secure Routing (ESR), Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (MOSFA) , and Optimal Support Vector Machine (OSVM).\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"46 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.9.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)是一个包含大量节点和无线传输能力的网络区域。无线传感器网络经常被用于最关心安全性和可靠性的重要应用中。提出的方法的主要目标是设计一个WSN,以最大限度地延长网络寿命,同时最小化功耗。在无线传感器网络中,采用信任管理来促进节点间的协作,这是实现可靠传输的关键。在本研究中,提出了一种新的无线传感器网络信任和能量感知路由协议(TEARP),该协议使用区块链技术来维护传感器节点(SNs)和聚合节点(ANs)的身份。提出的TEARP技术基于节点的直接信任值为节点提供彻底的信任值,过滤机制生成间接信任值。在此基础上,基于网络的广泛信任值和剩余能量的动态变化,采用增强阈值技术识别最合适的聚类头。最后,应该使用Sand Cat群优化算法(SCSOA)以安全的方式路由簇头。该方法分别使用网络寿命、剩余能量、吞吐量、包投递率和检测精度等具体参数进行了评估。与节能与安全路由(ESR)、基于shuffle青蛙跳跃算法和萤火虫算法的多目标自然启发算法(MOSFA)和最优支持向量机(OSVM)相比,提出的TEARP方法的网络生存期分别提高了39.64%、33.05%和27.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trust And Energy-Aware Routing Protocol for Wireless Sensor Networks Based on Secure Routing
Wireless Sensor Network (WSN) is a network area that includes a large number of nodes and the ability of wireless transmission. WSNs are frequently employed for vital applications in which security and dependability are of utmost concern. The main objective of the proposed method is to design a WSN to maximize network longevity while minimizing power usage. In a WSN, trust management is employed to encourage node collaboration, which is crucial for achieving dependable transmission. In this research, a novel Trust and Energy Aware Routing Protocol (TEARP) in wireless sensors networks is proposed, which use blockchain technology to maintain the identity of the Sensor Nodes (SNs) and Aggregator Nodes (ANs). The proposed TEARP technique provides a thorough trust value for nodes based on their direct trust values and the filtering mechanisms generate the indirect trust values. Further, an enhanced threshold technique is employed to identify the most appropriate clustering heads based on dynamic changes in the extensive trust values and residual energy of the networks. Lastly, cluster heads should be routed in a secure manner using a Sand Cat Swarm Optimization Algorithm (SCSOA). The proposed method has been evaluated using specific parameters such as Network Lifetime, Residual Energy, Throughpu,t Packet Delivery Ratio, and Detection Accuracy respectively. The proposed TEARP method improves the network lifetime by 39.64%, 33.05%, and 27.16%, compared with Energy-efficient and Secure Routing (ESR), Multi-Objective nature-inspired algorithm based on Shuffled frog-leaping algorithm and Firefly Algorithm (MOSFA) , and Optimal Support Vector Machine (OSVM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1