一种增强的时空人体检测关键帧提取方法

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-11-14 DOI:10.32985/ijeces.14.9.3
Rajeshwari D., Victoria Priscilla C.
{"title":"一种增强的时空人体检测关键帧提取方法","authors":"Rajeshwari D., Victoria Priscilla C.","doi":"10.32985/ijeces.14.9.3","DOIUrl":null,"url":null,"abstract":"Due to the immense availability of Closed-Circuit Television surveillance, it is quite difficult for crime investigation due to its huge storage and complex background. Content-based video retrieval is an excellent method to identify the best Keyframes from these surveillance videos. As the crime surveillance reports numerous action scenes, the existing keyframe extraction is not exemplary. At this point, the Spatio-temporal Histogram of Oriented Gradients - Support Vector Machine feature method with the combination of Background Subtraction is appended over the recovered crime video to highlight the human presence in surveillance frames. Additionally, the Visual Geometry Group trains these frames for the classification report of human-detected frames. These detected frames are processed to extract the keyframe by manipulating an inter-frame difference with its threshold value to favor the requisite human-detected keyframes. Thus, the experimental results of HOG-SVM illustrate a compression ratio of 98.54%, which is preferable to the proposed work's compression ratio of 98.71%, which supports the criminal investigation.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"46 10","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Spatio-Temporal Human Detected Keyframe Extraction\",\"authors\":\"Rajeshwari D., Victoria Priscilla C.\",\"doi\":\"10.32985/ijeces.14.9.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the immense availability of Closed-Circuit Television surveillance, it is quite difficult for crime investigation due to its huge storage and complex background. Content-based video retrieval is an excellent method to identify the best Keyframes from these surveillance videos. As the crime surveillance reports numerous action scenes, the existing keyframe extraction is not exemplary. At this point, the Spatio-temporal Histogram of Oriented Gradients - Support Vector Machine feature method with the combination of Background Subtraction is appended over the recovered crime video to highlight the human presence in surveillance frames. Additionally, the Visual Geometry Group trains these frames for the classification report of human-detected frames. These detected frames are processed to extract the keyframe by manipulating an inter-frame difference with its threshold value to favor the requisite human-detected keyframes. Thus, the experimental results of HOG-SVM illustrate a compression ratio of 98.54%, which is preferable to the proposed work's compression ratio of 98.71%, which supports the criminal investigation.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"46 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.9.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于闭路电视监控的广泛应用,其存储空间巨大,背景复杂,给犯罪侦查带来了很大的困难。基于内容的视频检索是从这些监控视频中识别最佳关键帧的一种很好的方法。由于犯罪监控报告的动作场景众多,现有的关键帧提取方法并不具有示范性。此时,在恢复的犯罪视频上附加了方向梯度时空直方图-支持向量机特征方法,结合背景减法,突出了监控帧中人类的存在。此外,视觉几何组训练这些帧用于人类检测到的帧的分类报告。对这些检测到的帧进行处理,通过操纵帧间差异及其阈值来提取关键帧,从而有利于必要的人类检测到的关键帧。因此,HOG-SVM的实验结果表明,压缩比为98.54%,优于建议作品的98.71%,支持刑事侦查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced Spatio-Temporal Human Detected Keyframe Extraction
Due to the immense availability of Closed-Circuit Television surveillance, it is quite difficult for crime investigation due to its huge storage and complex background. Content-based video retrieval is an excellent method to identify the best Keyframes from these surveillance videos. As the crime surveillance reports numerous action scenes, the existing keyframe extraction is not exemplary. At this point, the Spatio-temporal Histogram of Oriented Gradients - Support Vector Machine feature method with the combination of Background Subtraction is appended over the recovered crime video to highlight the human presence in surveillance frames. Additionally, the Visual Geometry Group trains these frames for the classification report of human-detected frames. These detected frames are processed to extract the keyframe by manipulating an inter-frame difference with its threshold value to favor the requisite human-detected keyframes. Thus, the experimental results of HOG-SVM illustrate a compression ratio of 98.54%, which is preferable to the proposed work's compression ratio of 98.71%, which supports the criminal investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1