{"title":"一阶HJB方程的神经网络及其在有障碍前传播中的应用","authors":"Olivier Bokanowski, Averil Prost, Xavier Warin","doi":"10.1007/s42985-023-00258-8","DOIUrl":null,"url":null,"abstract":"We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural networks for first order HJB equations and application to front propagation with obstacle terms\",\"authors\":\"Olivier Bokanowski, Averil Prost, Xavier Warin\",\"doi\":\"10.1007/s42985-023-00258-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-023-00258-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-023-00258-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural networks for first order HJB equations and application to front propagation with obstacle terms
We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.