一阶HJB方程的神经网络及其在有障碍前传播中的应用

Olivier Bokanowski, Averil Prost, Xavier Warin
{"title":"一阶HJB方程的神经网络及其在有障碍前传播中的应用","authors":"Olivier Bokanowski, Averil Prost, Xavier Warin","doi":"10.1007/s42985-023-00258-8","DOIUrl":null,"url":null,"abstract":"We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural networks for first order HJB equations and application to front propagation with obstacle terms\",\"authors\":\"Olivier Bokanowski, Averil Prost, Xavier Warin\",\"doi\":\"10.1007/s42985-023-00258-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-023-00258-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-023-00258-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个确定性的最优控制问题,关注有限视界场景。我们的建议包括使用深度神经网络近似来捕捉Bellman的动态规划原理。这也对应于求解一阶Hamilton-Jacobi-Bellman (HJB)方程。我们的工作建立在hur等人的研究基础上(SIAM J数字学报59(1):525-557,2021),该研究主要关注随机环境。然而,我们的目标是开发一种全新的方法,专门用于解决系统动力学中缺乏扩散的错误传播。我们的分析以平均规范的形式提供了精确的误差估计。此外,我们提供了几个与包含障碍物约束的前传播模型有关的学术数值示例,证明了我们的方法对中等维数(例如,范围从2到8)和非光滑值函数的系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks for first order HJB equations and application to front propagation with obstacle terms
We consider a deterministic optimal control problem, focusing on a finite horizon scenario. Our proposal involves employing deep neural network approximations to capture Bellman’s dynamic programming principle. This also corresponds to solving first-order Hamilton–Jacobi–Bellman (HJB) equations. Our work builds upon the research conducted by Huré et al. (SIAM J Numer Anal 59(1):525–557, 2021), which primarily focused on stochastic contexts. However, our objective is to develop a completely novel approach specifically designed to address error propagation in the absence of diffusion in the dynamics of the system. Our analysis provides precise error estimates in terms of an average norm. Furthermore, we provide several academic numerical examples that pertain to front propagation models incorporating obstacle constraints, demonstrating the effectiveness of our approach for systems with moderate dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations. Solving stationary inverse heat conduction in a thin plate Stochastic evolution equations with rough boundary noise Sharp well-posedness of the biharmonic Schrödinger equation in a quarter plane Combining the hybrid mimetic mixed method with the Scharfetter-Gummel scheme for magnetised transport in plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1