关于具有自回归和移动平均误差的非参数回归模型的估计

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2023-10-26 DOI:10.1007/s10463-023-00882-6
Qi Zheng, Yunwei Cui, Rongning Wu
{"title":"关于具有自回归和移动平均误差的非参数回归模型的估计","authors":"Qi Zheng,&nbsp;Yunwei Cui,&nbsp;Rongning Wu","doi":"10.1007/s10463-023-00882-6","DOIUrl":null,"url":null,"abstract":"<div><p>The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On estimation of nonparametric regression models with autoregressive and moving average errors\",\"authors\":\"Qi Zheng,&nbsp;Yunwei Cui,&nbsp;Rongning Wu\",\"doi\":\"10.1007/s10463-023-00882-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00882-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00882-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

具有相关误差的非参数回归模型是时间序列预测的有力工具。我们对这种模型的估计很感兴趣,在这种模型中,误差遵循自回归移动平均(ARMA)过程,协变量也可能是相关的。我们提出了一种基于样条的方法来联合估计 ARMA 过程的均值函数和参数,而不是按顺序估计模型的各个组成部分。在温和的正则条件下,我们建立了所提方法的理想渐近特性。广泛的模拟研究表明,我们提出的方法性能良好,并产生了支持既定理论结果的有力证据。我们的方法为分析序列相关数据提供了新的工具。我们通过对爱荷华州每周的天然气废气数据进行建模和预测,进一步说明了我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On estimation of nonparametric regression models with autoregressive and moving average errors

The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1