{"title":"美国中部降雪的天气气候学","authors":"Zachary J. Suriano, Charles Loewy, Jamie Uz","doi":"10.1175/jamc-d-23-0097.1","DOIUrl":null,"url":null,"abstract":"Abstract Prior research evaluating snowfall conditions and temporal trends in the United States often acknowledge the role of various synoptic-scale weather systems in governing snowfall variability. While synoptic classifications have been performed in other regions of North America in applications to snowfall, there remains a need for enhanced understanding of the atmospheric mechanisms of snowfall in the central United States. Here we conduct a novel synoptic climatological investigation of the weather systems responsible for snowfall in the central United States from 1948-2021, focused on their identification and the quantification of associated snowfall totals and events. Ten unique synoptic weather types (SWTs) were identified, each resulting in distinct regions of enhanced snowfall across the study domain aligning with regions of sufficiently cold air temperatures and forcing mechanisms. While a substantial proportion of seasonal snowfall is attributed to SWTs associated with surface troughs and/or mid-latitude cyclones, in portions of the southeastern and western study domain, as much as 70% of seasonal snowfall occurs during systems with high pressure centers as the domain’s synoptic-scale forcing. Easterly flow, potentially resulting in topographic uplift from high pressure to east of the domain, was associated with between 15-25% of seasonal snowfall in Nebraska and South Dakota. On average, 64.8% of the SWT occurrences resulted in snowfall within the study region, ranging between 40.1-93.5% by SWT. Synoptic climatological investigations provide value insights into the unique weather systems that generate hydroclimatic variability.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"61 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synoptic Climatology of Central United States Snowfall\",\"authors\":\"Zachary J. Suriano, Charles Loewy, Jamie Uz\",\"doi\":\"10.1175/jamc-d-23-0097.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Prior research evaluating snowfall conditions and temporal trends in the United States often acknowledge the role of various synoptic-scale weather systems in governing snowfall variability. While synoptic classifications have been performed in other regions of North America in applications to snowfall, there remains a need for enhanced understanding of the atmospheric mechanisms of snowfall in the central United States. Here we conduct a novel synoptic climatological investigation of the weather systems responsible for snowfall in the central United States from 1948-2021, focused on their identification and the quantification of associated snowfall totals and events. Ten unique synoptic weather types (SWTs) were identified, each resulting in distinct regions of enhanced snowfall across the study domain aligning with regions of sufficiently cold air temperatures and forcing mechanisms. While a substantial proportion of seasonal snowfall is attributed to SWTs associated with surface troughs and/or mid-latitude cyclones, in portions of the southeastern and western study domain, as much as 70% of seasonal snowfall occurs during systems with high pressure centers as the domain’s synoptic-scale forcing. Easterly flow, potentially resulting in topographic uplift from high pressure to east of the domain, was associated with between 15-25% of seasonal snowfall in Nebraska and South Dakota. On average, 64.8% of the SWT occurrences resulted in snowfall within the study region, ranging between 40.1-93.5% by SWT. Synoptic climatological investigations provide value insights into the unique weather systems that generate hydroclimatic variability.\",\"PeriodicalId\":15027,\"journal\":{\"name\":\"Journal of Applied Meteorology and Climatology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Meteorology and Climatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jamc-d-23-0097.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0097.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Synoptic Climatology of Central United States Snowfall
Abstract Prior research evaluating snowfall conditions and temporal trends in the United States often acknowledge the role of various synoptic-scale weather systems in governing snowfall variability. While synoptic classifications have been performed in other regions of North America in applications to snowfall, there remains a need for enhanced understanding of the atmospheric mechanisms of snowfall in the central United States. Here we conduct a novel synoptic climatological investigation of the weather systems responsible for snowfall in the central United States from 1948-2021, focused on their identification and the quantification of associated snowfall totals and events. Ten unique synoptic weather types (SWTs) were identified, each resulting in distinct regions of enhanced snowfall across the study domain aligning with regions of sufficiently cold air temperatures and forcing mechanisms. While a substantial proportion of seasonal snowfall is attributed to SWTs associated with surface troughs and/or mid-latitude cyclones, in portions of the southeastern and western study domain, as much as 70% of seasonal snowfall occurs during systems with high pressure centers as the domain’s synoptic-scale forcing. Easterly flow, potentially resulting in topographic uplift from high pressure to east of the domain, was associated with between 15-25% of seasonal snowfall in Nebraska and South Dakota. On average, 64.8% of the SWT occurrences resulted in snowfall within the study region, ranging between 40.1-93.5% by SWT. Synoptic climatological investigations provide value insights into the unique weather systems that generate hydroclimatic variability.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.