结紧时的机械响应

IF 2.6 4区 工程技术 Q2 MECHANICS Journal of Applied Mechanics-Transactions of the Asme Pub Date : 2023-10-26 DOI:10.1115/1.4063895
Dezhong Tong, MD Khalil, Matthew Justin Silva, Guanjin Wang, Bashir Khoda, Mohammad Khalid Jawed
{"title":"结紧时的机械响应","authors":"Dezhong Tong, MD Khalil, Matthew Justin Silva, Guanjin Wang, Bashir Khoda, Mohammad Khalid Jawed","doi":"10.1115/1.4063895","DOIUrl":null,"url":null,"abstract":"Abstract The fisherman's knot, renowned for its strength and reliability, finds applications in engineering and medicine. However, a comprehensive understanding of its mechanics remains limited in scientific literature. In this paper, we present a systematic study of the tightening behavior of the fisherman's knot through a combined approach of tabletop experiments and Discrete Elastic Rods simulations. Our experimental setup involves gradually applying tension to the two ends of the fisherman's knot until it fractures. We observed a correlation between the knot's material properties and its behavior during tightening, leading up to fracture. The tightening process of the fisherman's knot exhibits distinct ``sliding' or ``stretching' motions, influenced by factors such as friction and elastic stiffness. Furthermore, the failure modes of the knot (material fracture and topological failure) are determined by an interplay between elastic stiffness, friction, and initial conditions. This study sheds light on the underlying mechanics of the fisherman's knot and provides insight into its behavior during the tightening process, contributing to the broader understanding of the mechanics of knots in practical applications.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":"40 6-7","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Response of Fisherman's Knots during Tightening\",\"authors\":\"Dezhong Tong, MD Khalil, Matthew Justin Silva, Guanjin Wang, Bashir Khoda, Mohammad Khalid Jawed\",\"doi\":\"10.1115/1.4063895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The fisherman's knot, renowned for its strength and reliability, finds applications in engineering and medicine. However, a comprehensive understanding of its mechanics remains limited in scientific literature. In this paper, we present a systematic study of the tightening behavior of the fisherman's knot through a combined approach of tabletop experiments and Discrete Elastic Rods simulations. Our experimental setup involves gradually applying tension to the two ends of the fisherman's knot until it fractures. We observed a correlation between the knot's material properties and its behavior during tightening, leading up to fracture. The tightening process of the fisherman's knot exhibits distinct ``sliding' or ``stretching' motions, influenced by factors such as friction and elastic stiffness. Furthermore, the failure modes of the knot (material fracture and topological failure) are determined by an interplay between elastic stiffness, friction, and initial conditions. This study sheds light on the underlying mechanics of the fisherman's knot and provides insight into its behavior during the tightening process, contributing to the broader understanding of the mechanics of knots in practical applications.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":\"40 6-7\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063895\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

渔夫结以其强度和可靠性而闻名,在工程和医学中得到了应用。然而,对其力学的全面理解在科学文献中仍然有限。在本文中,我们通过桌面实验和离散弹性杆模拟相结合的方法,对渔民结的收紧行为进行了系统的研究。我们的实验设置包括逐渐向渔民结的两端施加张力,直到它断裂。我们观察到结的材料特性与其在拧紧过程中的行为之间存在相关性,从而导致断裂。受摩擦和弹性刚度等因素的影响,渔民结的收紧过程表现出明显的“滑动”或“拉伸”运动。此外,结的破坏模式(材料断裂和拓扑破坏)是由弹性刚度、摩擦和初始条件之间的相互作用决定的。这项研究揭示了渔民结的潜在力学,并提供了其在拧紧过程中的行为,有助于在实际应用中更广泛地了解结的力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Response of Fisherman's Knots during Tightening
Abstract The fisherman's knot, renowned for its strength and reliability, finds applications in engineering and medicine. However, a comprehensive understanding of its mechanics remains limited in scientific literature. In this paper, we present a systematic study of the tightening behavior of the fisherman's knot through a combined approach of tabletop experiments and Discrete Elastic Rods simulations. Our experimental setup involves gradually applying tension to the two ends of the fisherman's knot until it fractures. We observed a correlation between the knot's material properties and its behavior during tightening, leading up to fracture. The tightening process of the fisherman's knot exhibits distinct ``sliding' or ``stretching' motions, influenced by factors such as friction and elastic stiffness. Furthermore, the failure modes of the knot (material fracture and topological failure) are determined by an interplay between elastic stiffness, friction, and initial conditions. This study sheds light on the underlying mechanics of the fisherman's knot and provides insight into its behavior during the tightening process, contributing to the broader understanding of the mechanics of knots in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
期刊最新文献
FAST OPTIMAL DESIGN OF SHELL-GRADED-INFILL STRUCTURES WITH EXPLICIT BOUNDARY BY A HYBRID MMC-AABH PLUS APPROACH The role of frequency and impedance contrasts in bandgap closing and formation patterns of axially-vibrating phononic crystals Head Injuries Induced by Tennis Ball Impacts: A Computational Study Experimental Validation of Reconstructed Microstructure via Deep Learning in Discontinuous Fiber Platelet Composite A Non-contact Method for Estimating Thin Metal Film Adhesion Strength through Current Induced Void Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1