{"title":"测量医疗废物管理的循环潜力——动态循环性能分析","authors":"Chih-Kai Yang, Hwong-Wen Ma, Mei-Hua Yuan","doi":"10.1186/s42834-023-00188-5","DOIUrl":null,"url":null,"abstract":"Abstract The global transition towards circular economy (CE) signifies a shift in industrial waste management objective from “expansion of recycling industry” to achieve “waste as resource”. The medical industry has attracted CE research attention the due to its significant waste generation and relatively slower progress towards CE, despite the substantial recycling potential identified by the WHO. Studies indicate that this can be attributed to the hazardous nature of medical waste and the prioritization of safety in waste treatment over potential economic and health co-benefits. Recognizing the limitations of current waste management performance evaluation framework, this research introduces the dynamic circularity performance index, and further introduces the two new indicators of “recycling circularity (Rc)” and “real circularity performance”, in conjunction with “recycling rate”, to enable industry-specific sustainability assessment of waste management performance. The case study on Taiwan medical waste management performance from 2014 to 2021 on the four identified medical waste categories confirms the limitations of assessing performance solely based on the quantity-based metric of “recycling rate”. For example, the significant decline in the recycling rate from 33.1% to only 12.2% between 2019 and 2020 might be interpreted as a drop in environmental performance. However, the increase in both overall recycling efficiency and total volume of waste recycled, as demonstrated by “circularity performance” and “real circularity performance” reveals a well-maintained resource recovery performance in coping with the stunning 327% increase in total waste generation caused by the COVID-19 pandemic. Similarly, while the “recyclable waste’ category exhibits a significant increasing in the recycling rate over the assessment period, the “Rc” results highlight a degradation in recycling efficiency. The synergistic effect of the newly introduced indicators unveils several unique phenomena affecting the CE transition of the medical industry. These includes regulatory control, the single-use mindset, hazardous nature of the waste, the classification of waste, policy incentives and recycling capacity. Further improvement can be made to expand the coverage to all life cycle stages and refine the method for determining the relative circularity of treatment performance. Such advancements can attribute to enhance waste management performance assessment and the development of effective CE transition strategies and policies.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"130 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring circularity potential for medical waste management – a dynamic circularity performance analysis\",\"authors\":\"Chih-Kai Yang, Hwong-Wen Ma, Mei-Hua Yuan\",\"doi\":\"10.1186/s42834-023-00188-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The global transition towards circular economy (CE) signifies a shift in industrial waste management objective from “expansion of recycling industry” to achieve “waste as resource”. The medical industry has attracted CE research attention the due to its significant waste generation and relatively slower progress towards CE, despite the substantial recycling potential identified by the WHO. Studies indicate that this can be attributed to the hazardous nature of medical waste and the prioritization of safety in waste treatment over potential economic and health co-benefits. Recognizing the limitations of current waste management performance evaluation framework, this research introduces the dynamic circularity performance index, and further introduces the two new indicators of “recycling circularity (Rc)” and “real circularity performance”, in conjunction with “recycling rate”, to enable industry-specific sustainability assessment of waste management performance. The case study on Taiwan medical waste management performance from 2014 to 2021 on the four identified medical waste categories confirms the limitations of assessing performance solely based on the quantity-based metric of “recycling rate”. For example, the significant decline in the recycling rate from 33.1% to only 12.2% between 2019 and 2020 might be interpreted as a drop in environmental performance. However, the increase in both overall recycling efficiency and total volume of waste recycled, as demonstrated by “circularity performance” and “real circularity performance” reveals a well-maintained resource recovery performance in coping with the stunning 327% increase in total waste generation caused by the COVID-19 pandemic. Similarly, while the “recyclable waste’ category exhibits a significant increasing in the recycling rate over the assessment period, the “Rc” results highlight a degradation in recycling efficiency. The synergistic effect of the newly introduced indicators unveils several unique phenomena affecting the CE transition of the medical industry. These includes regulatory control, the single-use mindset, hazardous nature of the waste, the classification of waste, policy incentives and recycling capacity. Further improvement can be made to expand the coverage to all life cycle stages and refine the method for determining the relative circularity of treatment performance. Such advancements can attribute to enhance waste management performance assessment and the development of effective CE transition strategies and policies.\",\"PeriodicalId\":22130,\"journal\":{\"name\":\"Sustainable Environment Research\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Environment Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42834-023-00188-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42834-023-00188-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Measuring circularity potential for medical waste management – a dynamic circularity performance analysis
Abstract The global transition towards circular economy (CE) signifies a shift in industrial waste management objective from “expansion of recycling industry” to achieve “waste as resource”. The medical industry has attracted CE research attention the due to its significant waste generation and relatively slower progress towards CE, despite the substantial recycling potential identified by the WHO. Studies indicate that this can be attributed to the hazardous nature of medical waste and the prioritization of safety in waste treatment over potential economic and health co-benefits. Recognizing the limitations of current waste management performance evaluation framework, this research introduces the dynamic circularity performance index, and further introduces the two new indicators of “recycling circularity (Rc)” and “real circularity performance”, in conjunction with “recycling rate”, to enable industry-specific sustainability assessment of waste management performance. The case study on Taiwan medical waste management performance from 2014 to 2021 on the four identified medical waste categories confirms the limitations of assessing performance solely based on the quantity-based metric of “recycling rate”. For example, the significant decline in the recycling rate from 33.1% to only 12.2% between 2019 and 2020 might be interpreted as a drop in environmental performance. However, the increase in both overall recycling efficiency and total volume of waste recycled, as demonstrated by “circularity performance” and “real circularity performance” reveals a well-maintained resource recovery performance in coping with the stunning 327% increase in total waste generation caused by the COVID-19 pandemic. Similarly, while the “recyclable waste’ category exhibits a significant increasing in the recycling rate over the assessment period, the “Rc” results highlight a degradation in recycling efficiency. The synergistic effect of the newly introduced indicators unveils several unique phenomena affecting the CE transition of the medical industry. These includes regulatory control, the single-use mindset, hazardous nature of the waste, the classification of waste, policy incentives and recycling capacity. Further improvement can be made to expand the coverage to all life cycle stages and refine the method for determining the relative circularity of treatment performance. Such advancements can attribute to enhance waste management performance assessment and the development of effective CE transition strategies and policies.
期刊介绍:
The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments