{"title":"基于驾驶员记忆和前导配合的自动驾驶汽车和人类驾驶汽车跟车行为预测","authors":"Ayobami Adewale, Chris Lee","doi":"10.1177/03611981231195051","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles (AVs) have moved from hype to reality as the penetration and acceptance rate continues to increase. As they are slowly integrated into traffic with human-driven vehicles (HDVs), it is necessary to predict the car-following behaviors of AVs and HDVs for better control of AV–HDV mixed traffic. This study extends a data-driven car-following model to incorporate drivers’ memory, and cooperation with the lead vehicle. The model predicts the following vehicle’s speed in AV–HDV mixed traffic. The effect of drivers’ cooperation on car-following behavior was modeled using prospect theory (PT), whereas the driver’s memory was incorporated using the memory cell of a long short-term memory (LSTM) neural network. This extended car-following model is called the “PT-LSTM model.” Real-world vehicle trajectories of HDVs and AVs in the Waymo AV Open Dataset were used to calibrate and validate the PT-LSTM model. The PT-LSTM model demonstrated higher accuracy compared with the LSTM model that did not consider drivers’ cooperation, the multiple layer perceptron model, Gipps’ model, and the intelligent driver model that incorporated PT. The importance of variables in different time steps in the PT-LSTM model was also evaluated using SHapley Additive exPlanations (SHAP). The SHAP results showed that AV followers were more likely to cooperate with the lead HDV, whereas HDV followers were more likely to cooperate with the lead AV than the lead HDV. Thus, this study underscores the importance of considering drivers’ memory and cooperation with the lead vehicle for the prediction of car-following behaviors in AV–HDV mixed traffic.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"25 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Car-Following Behavior of Autonomous Vehicle and Human-Driven Vehicle Based on Drivers’ Memory and Cooperation With Lead Vehicle\",\"authors\":\"Ayobami Adewale, Chris Lee\",\"doi\":\"10.1177/03611981231195051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous vehicles (AVs) have moved from hype to reality as the penetration and acceptance rate continues to increase. As they are slowly integrated into traffic with human-driven vehicles (HDVs), it is necessary to predict the car-following behaviors of AVs and HDVs for better control of AV–HDV mixed traffic. This study extends a data-driven car-following model to incorporate drivers’ memory, and cooperation with the lead vehicle. The model predicts the following vehicle’s speed in AV–HDV mixed traffic. The effect of drivers’ cooperation on car-following behavior was modeled using prospect theory (PT), whereas the driver’s memory was incorporated using the memory cell of a long short-term memory (LSTM) neural network. This extended car-following model is called the “PT-LSTM model.” Real-world vehicle trajectories of HDVs and AVs in the Waymo AV Open Dataset were used to calibrate and validate the PT-LSTM model. The PT-LSTM model demonstrated higher accuracy compared with the LSTM model that did not consider drivers’ cooperation, the multiple layer perceptron model, Gipps’ model, and the intelligent driver model that incorporated PT. The importance of variables in different time steps in the PT-LSTM model was also evaluated using SHapley Additive exPlanations (SHAP). The SHAP results showed that AV followers were more likely to cooperate with the lead HDV, whereas HDV followers were more likely to cooperate with the lead AV than the lead HDV. Thus, this study underscores the importance of considering drivers’ memory and cooperation with the lead vehicle for the prediction of car-following behaviors in AV–HDV mixed traffic.\",\"PeriodicalId\":23279,\"journal\":{\"name\":\"Transportation Research Record\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981231195051\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231195051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Prediction of Car-Following Behavior of Autonomous Vehicle and Human-Driven Vehicle Based on Drivers’ Memory and Cooperation With Lead Vehicle
Autonomous vehicles (AVs) have moved from hype to reality as the penetration and acceptance rate continues to increase. As they are slowly integrated into traffic with human-driven vehicles (HDVs), it is necessary to predict the car-following behaviors of AVs and HDVs for better control of AV–HDV mixed traffic. This study extends a data-driven car-following model to incorporate drivers’ memory, and cooperation with the lead vehicle. The model predicts the following vehicle’s speed in AV–HDV mixed traffic. The effect of drivers’ cooperation on car-following behavior was modeled using prospect theory (PT), whereas the driver’s memory was incorporated using the memory cell of a long short-term memory (LSTM) neural network. This extended car-following model is called the “PT-LSTM model.” Real-world vehicle trajectories of HDVs and AVs in the Waymo AV Open Dataset were used to calibrate and validate the PT-LSTM model. The PT-LSTM model demonstrated higher accuracy compared with the LSTM model that did not consider drivers’ cooperation, the multiple layer perceptron model, Gipps’ model, and the intelligent driver model that incorporated PT. The importance of variables in different time steps in the PT-LSTM model was also evaluated using SHapley Additive exPlanations (SHAP). The SHAP results showed that AV followers were more likely to cooperate with the lead HDV, whereas HDV followers were more likely to cooperate with the lead AV than the lead HDV. Thus, this study underscores the importance of considering drivers’ memory and cooperation with the lead vehicle for the prediction of car-following behaviors in AV–HDV mixed traffic.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.