法罗-设得兰盆地油气生成与运移——火成岩侵入的作用

IF 1.9 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Petroleum Geoscience Pub Date : 2023-09-14 DOI:10.1144/petgeo2022-084
A. Mangione, N. Schofield, S. Holford, C. Grove, C. Ellis, C. Forster, O. Schenk, D. Gardiner, B. Hedley, L. Broadley, J.R. Underhill
{"title":"法罗-设得兰盆地油气生成与运移——火成岩侵入的作用","authors":"A. Mangione, N. Schofield, S. Holford, C. Grove, C. Ellis, C. Forster, O. Schenk, D. Gardiner, B. Hedley, L. Broadley, J.R. Underhill","doi":"10.1144/petgeo2022-084","DOIUrl":null,"url":null,"abstract":"Previous basin modelling of the Faroe-Shetland Basin (FSB, offshore UK) has suggested mid-Cretaceous petroleum generation, which predates the deposition of the working Paleogene reservoirs and traps. To justify the time discrepancy between generation, reservoir and trap formation, factors such as intermediary accumulations and overpressure have been invoked. However, across much of the FSB, the Cretaceous sequences that overly the Kimmeridgian source rock are heavily intruded by Paleogene-aged intrusions. Recent modelling has shown that the emplacement of the intrusions, coupled with lower radiogenic heat production from underlying basement, leads to estimates of petroleum generation occurring up to 40 Myr more recently than suggested by previous models. In this work, we seek to better understand the role that igneous intrusions have exerted on petroleum generation and migration in the FSB. Models with varying thicknesses of Paleogene intrusions are compared with those that consider the Cretaceous sequence as purely sedimentary (i.e. similar to assumptions in previous modelling). The estimated times of petroleum generation are compared with geochronological constraints on the ages of oils (i.e. 90-68 Ma) and deposition and formation of other petroleum system elements. By considering only the effect of igneous intrusions, the expulsion onset from the source rocks is retarded by up to approximately 12 Myr. In addition, our models show the impact of the intrusions on petroleum saturation and migration suggesting that intrusions have potentially compartmentalised the basin, trapping petroleum beneath or within the sill complex. Finally, our findings suggest that basin models in regions impacted by significant magmatism need to consider the impact of intrusions to more accurately constrain both petroleum generation and migration. Thematic collection: This article is part of the UKCS Atlantic Margin collection available at: https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"49 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petroleum generation and migration through the Faroe-Shetland Basin - The role of Igneous Intrusions\",\"authors\":\"A. Mangione, N. Schofield, S. Holford, C. Grove, C. Ellis, C. Forster, O. Schenk, D. Gardiner, B. Hedley, L. Broadley, J.R. Underhill\",\"doi\":\"10.1144/petgeo2022-084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous basin modelling of the Faroe-Shetland Basin (FSB, offshore UK) has suggested mid-Cretaceous petroleum generation, which predates the deposition of the working Paleogene reservoirs and traps. To justify the time discrepancy between generation, reservoir and trap formation, factors such as intermediary accumulations and overpressure have been invoked. However, across much of the FSB, the Cretaceous sequences that overly the Kimmeridgian source rock are heavily intruded by Paleogene-aged intrusions. Recent modelling has shown that the emplacement of the intrusions, coupled with lower radiogenic heat production from underlying basement, leads to estimates of petroleum generation occurring up to 40 Myr more recently than suggested by previous models. In this work, we seek to better understand the role that igneous intrusions have exerted on petroleum generation and migration in the FSB. Models with varying thicknesses of Paleogene intrusions are compared with those that consider the Cretaceous sequence as purely sedimentary (i.e. similar to assumptions in previous modelling). The estimated times of petroleum generation are compared with geochronological constraints on the ages of oils (i.e. 90-68 Ma) and deposition and formation of other petroleum system elements. By considering only the effect of igneous intrusions, the expulsion onset from the source rocks is retarded by up to approximately 12 Myr. In addition, our models show the impact of the intrusions on petroleum saturation and migration suggesting that intrusions have potentially compartmentalised the basin, trapping petroleum beneath or within the sill complex. Finally, our findings suggest that basin models in regions impacted by significant magmatism need to consider the impact of intrusions to more accurately constrain both petroleum generation and migration. Thematic collection: This article is part of the UKCS Atlantic Margin collection available at: https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2022-084\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/petgeo2022-084","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以前的法罗-设得兰盆地(FSB,英国近海)的盆地建模表明,白垩纪中期有石油生成,早于古近纪储层和圈闭的沉积。为了证明生成、储层和圈闭形成之间的时间差异,人们援引了中间聚集和超压等因素。然而,在FSB的大部分地区,超过基默里纪烃源岩的白垩纪层序被古近系的侵入物严重侵入。最近的模拟表明,侵入体的就位,加上来自下伏基底的放射性成因热产量降低,导致石油生成的估计时间比以前的模型所建议的要晚40兆瓦。在这项工作中,我们试图更好地理解火成岩侵入对FSB中石油生成和运移的作用。将具有不同厚度的古近系侵入体的模型与将白垩纪层序视为纯沉积层序的模型(即类似于先前模型中的假设)进行比较。估计的石油生成时间与地质年代学对石油年龄的限制(即90-68 Ma)以及其他石油系统要素的沉积和形成进行了比较。如果只考虑火成岩侵入的影响,则烃源岩的排烃开始延迟约12myr。此外,我们的模型显示了侵入物对石油饱和度和运移的影响,表明侵入物潜在地划分了盆地,将石油困在储层复合体下方或内部。最后,我们的研究结果表明,在岩浆作用明显的地区,盆地模型需要考虑侵入的影响,以更准确地约束石油的生成和运移。专题集合:这篇文章是可在:https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin得到的UKCS大西洋边缘集合的一部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petroleum generation and migration through the Faroe-Shetland Basin - The role of Igneous Intrusions
Previous basin modelling of the Faroe-Shetland Basin (FSB, offshore UK) has suggested mid-Cretaceous petroleum generation, which predates the deposition of the working Paleogene reservoirs and traps. To justify the time discrepancy between generation, reservoir and trap formation, factors such as intermediary accumulations and overpressure have been invoked. However, across much of the FSB, the Cretaceous sequences that overly the Kimmeridgian source rock are heavily intruded by Paleogene-aged intrusions. Recent modelling has shown that the emplacement of the intrusions, coupled with lower radiogenic heat production from underlying basement, leads to estimates of petroleum generation occurring up to 40 Myr more recently than suggested by previous models. In this work, we seek to better understand the role that igneous intrusions have exerted on petroleum generation and migration in the FSB. Models with varying thicknesses of Paleogene intrusions are compared with those that consider the Cretaceous sequence as purely sedimentary (i.e. similar to assumptions in previous modelling). The estimated times of petroleum generation are compared with geochronological constraints on the ages of oils (i.e. 90-68 Ma) and deposition and formation of other petroleum system elements. By considering only the effect of igneous intrusions, the expulsion onset from the source rocks is retarded by up to approximately 12 Myr. In addition, our models show the impact of the intrusions on petroleum saturation and migration suggesting that intrusions have potentially compartmentalised the basin, trapping petroleum beneath or within the sill complex. Finally, our findings suggest that basin models in regions impacted by significant magmatism need to consider the impact of intrusions to more accurately constrain both petroleum generation and migration. Thematic collection: This article is part of the UKCS Atlantic Margin collection available at: https://www.lyellcollection.org/topic/collections/new-learning-from-exploration-and-development-in-the-ukcs-atlantic-margin
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Geoscience
Petroleum Geoscience 地学-地球科学综合
CiteScore
4.80
自引率
11.80%
发文量
28
审稿时长
>12 weeks
期刊介绍: Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE). Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership. Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.
期刊最新文献
The influence of sedimentary facies, mineralogy, and diagenesis on reservoir properties of the coal-bearing Upper Carboniferous of NW Germany Natural fractures at depth in shale reservoirs: new insights from the southern Sichuan Basin marine shales Petrographic and Petrophysical Characterization of Pre-salt Aptian Carbonate Reservoirs from The Santos Basin, Brazil Simultaneous Well Spacing and Completion Optimization Using Automated Machine Learning Approach. A Case Study of Marcellus Shale Reservoir in the North-Eastern United States Assessing the impact of hydrodynamics on capillary seal capacity: application of the Manzocchi & Childs model in trap analysis workflows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1