用于快速增量FPGA编译的扩展高级部分重构

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2023-09-14 DOI:10.1145/3617837
Yuanlong Xiao, Dongjoon Park, Zeyu Jason Niu, Aditya Hota, André DeHon
{"title":"用于快速增量FPGA编译的扩展高级部分重构","authors":"Yuanlong Xiao, Dongjoon Park, Zeyu Jason Niu, Aditya Hota, André DeHon","doi":"10.1145/3617837","DOIUrl":null,"url":null,"abstract":"Partial Reconfiguration (PR) is a key technique in the application design on modern FPGAs. However, current PR tools heavily rely on the developer to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which are of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions, instead of Verilog modules, to accelerate the FPGA incremental compilation and automate the flow from C/C++ to bitstreams. We use a lightweight Simulated Annealing floorplanner and show that it can produce high-quality PR floorplans an order of magnitude faster than analytic methods. By mapping Rosetta HLS benchmarks, we demonstrate that the incremental compilation can be accelerated by 3–10 × compared with state-of-the-art Xilinx Vitis flow without performance loss, at the cost of 15-67% one-time overlay set-up time.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"27 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ExHiPR: Extended High-level Partial Reconfiguration for Fast Incremental FPGA Compilation\",\"authors\":\"Yuanlong Xiao, Dongjoon Park, Zeyu Jason Niu, Aditya Hota, André DeHon\",\"doi\":\"10.1145/3617837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial Reconfiguration (PR) is a key technique in the application design on modern FPGAs. However, current PR tools heavily rely on the developer to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which are of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions, instead of Verilog modules, to accelerate the FPGA incremental compilation and automate the flow from C/C++ to bitstreams. We use a lightweight Simulated Annealing floorplanner and show that it can produce high-quality PR floorplans an order of magnitude faster than analytic methods. By mapping Rosetta HLS benchmarks, we demonstrate that the incremental compilation can be accelerated by 3–10 × compared with state-of-the-art Xilinx Vitis flow without performance loss, at the cost of 15-67% one-time overlay set-up time.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617837\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617837","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

部分重构是现代fpga应用设计中的一项关键技术。然而,当前的PR工具严重依赖于开发人员手动执行PR模块定义、布局规划和低水平的流程控制。现有的PR工具也不考虑高级合成语言,而高级合成语言是软件开发人员非常感兴趣的。我们提出HiPR,一个开源框架,以弥合HLS和PR之间的差距。HiPR允许开发人员定义部分可重构的C/ c++函数,而不是Verilog模块,以加速FPGA增量编译和自动化从C/ c++到比特流的流动。我们使用了一个轻量级的模拟退火平面规划器,并表明它可以比分析方法更快地生成高质量的PR平面规划。通过映射Rosetta HLS基准,我们证明了增量编译可以比最先进的Xilinx Vitis流加速3-10倍,而不会造成性能损失,代价是一次性覆盖设置时间减少15-67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ExHiPR: Extended High-level Partial Reconfiguration for Fast Incremental FPGA Compilation
Partial Reconfiguration (PR) is a key technique in the application design on modern FPGAs. However, current PR tools heavily rely on the developer to manually conduct PR module definition, floorplanning, and flow control at a low level. The existing PR tools do not consider High-Level-Synthesis languages either, which are of great interest to software developers. We propose HiPR, an open-source framework, to bridge the gap between HLS and PR. HiPR allows the developer to define partially reconfigurable C/C++ functions, instead of Verilog modules, to accelerate the FPGA incremental compilation and automate the flow from C/C++ to bitstreams. We use a lightweight Simulated Annealing floorplanner and show that it can produce high-quality PR floorplans an order of magnitude faster than analytic methods. By mapping Rosetta HLS benchmarks, we demonstrate that the incremental compilation can be accelerated by 3–10 × compared with state-of-the-art Xilinx Vitis flow without performance loss, at the cost of 15-67% one-time overlay set-up time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1