聊天生成预训练变压器在皮肤科特定问题上的表现及其在医学教育中的意义

James Behrmann, Ellen M. Hong, Shannon Meledathu, Aliza Leiter, Michael Povelaitis, Mariela Mitre
{"title":"聊天生成预训练变压器在皮肤科特定问题上的表现及其在医学教育中的意义","authors":"James Behrmann, Ellen M. Hong, Shannon Meledathu, Aliza Leiter, Michael Povelaitis, Mariela Mitre","doi":"10.21037/jmai-23-47","DOIUrl":null,"url":null,"abstract":"Background: Large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) have gained popularity in healthcare by performing at or near the passing threshold for the United States Medical Licensing Exam (USMLE), but some limitations should be considered. Dermatology is a specialized medical field that relies heavily on visual recognition and images for diagnosis. This paper aimed to measure ChatGPT’s abilities to answer dermatology questions and compare this sub-specialty accuracy to its overall scores on USMLE Step exams.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chat generative pre-trained transformer’s performance on dermatology-specific questions and its implications in medical education\",\"authors\":\"James Behrmann, Ellen M. Hong, Shannon Meledathu, Aliza Leiter, Michael Povelaitis, Mariela Mitre\",\"doi\":\"10.21037/jmai-23-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) have gained popularity in healthcare by performing at or near the passing threshold for the United States Medical Licensing Exam (USMLE), but some limitations should be considered. Dermatology is a specialized medical field that relies heavily on visual recognition and images for diagnosis. This paper aimed to measure ChatGPT’s abilities to answer dermatology questions and compare this sub-specialty accuracy to its overall scores on USMLE Step exams.\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/jmai-23-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai-23-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:像聊天生成预训练转换器(ChatGPT)这样的大型语言模型(llm)已经在医疗保健领域获得了普及,因为它们达到或接近美国医疗执照考试(USMLE)的通过门槛,但也应该考虑到一些限制。皮肤科是一个专业的医学领域,严重依赖于视觉识别和图像诊断。本文旨在测量ChatGPT回答皮肤病学问题的能力,并将这一子专业的准确性与其在USMLE步骤考试中的总分进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chat generative pre-trained transformer’s performance on dermatology-specific questions and its implications in medical education
Background: Large language models (LLMs) like chat generative pre-trained transformer (ChatGPT) have gained popularity in healthcare by performing at or near the passing threshold for the United States Medical Licensing Exam (USMLE), but some limitations should be considered. Dermatology is a specialized medical field that relies heavily on visual recognition and images for diagnosis. This paper aimed to measure ChatGPT’s abilities to answer dermatology questions and compare this sub-specialty accuracy to its overall scores on USMLE Step exams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence in periodontology and implantology—a narrative review Exploring the capabilities and limitations of large language models in nuclear medicine knowledge with primary focus on GPT-3.5, GPT-4 and Google Bard Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records Analysis of factors influencing maternal mortality and newborn health—a machine learning approach Efficient glioma grade prediction using learned features extracted from convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1