{"title":"消费级电动汽车标准与电压趋势[行业脉搏]","authors":"Kristen Parrish, Stephanie Watts Butler","doi":"10.1109/mpel.2023.3301284","DOIUrl":null,"url":null,"abstract":"The electric vehicle (EV) market continues to grow, with an estimated 14 million vehicles to be sold by end of 2023 <xref ref-type=\"bibr\" rid=\"ref1\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[1]</xref> . As EVs continue to appear on the road, the charging infrastructure needed to support them will also continue to scale, especially with the help of government subsidies offered to both manufacturers and consumers (check out the September 2022 column for a deep dive on this <xref ref-type=\"bibr\" rid=\"ref2\" xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">[2]</xref> ). EV hardware, both in the vehicle (drive train/inverter) and in the charging station, will drive rail voltages—and with multiple voltage options comes competing semiconductor requirements. This article explores how implementation of different plug types and charging standards are impacting infrastructure scaling and accessibility, and how these may impact wide bandgap (WBG) semiconductor needs going forward.","PeriodicalId":13049,"journal":{"name":"IEEE Power Electronics Magazine","volume":"17 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumer EV Standards and Voltage Trends [Industry Pulse]\",\"authors\":\"Kristen Parrish, Stephanie Watts Butler\",\"doi\":\"10.1109/mpel.2023.3301284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electric vehicle (EV) market continues to grow, with an estimated 14 million vehicles to be sold by end of 2023 <xref ref-type=\\\"bibr\\\" rid=\\\"ref1\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[1]</xref> . As EVs continue to appear on the road, the charging infrastructure needed to support them will also continue to scale, especially with the help of government subsidies offered to both manufacturers and consumers (check out the September 2022 column for a deep dive on this <xref ref-type=\\\"bibr\\\" rid=\\\"ref2\\\" xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\">[2]</xref> ). EV hardware, both in the vehicle (drive train/inverter) and in the charging station, will drive rail voltages—and with multiple voltage options comes competing semiconductor requirements. This article explores how implementation of different plug types and charging standards are impacting infrastructure scaling and accessibility, and how these may impact wide bandgap (WBG) semiconductor needs going forward.\",\"PeriodicalId\":13049,\"journal\":{\"name\":\"IEEE Power Electronics Magazine\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power Electronics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mpel.2023.3301284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mpel.2023.3301284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Consumer EV Standards and Voltage Trends [Industry Pulse]
The electric vehicle (EV) market continues to grow, with an estimated 14 million vehicles to be sold by end of 2023 [1] . As EVs continue to appear on the road, the charging infrastructure needed to support them will also continue to scale, especially with the help of government subsidies offered to both manufacturers and consumers (check out the September 2022 column for a deep dive on this [2] ). EV hardware, both in the vehicle (drive train/inverter) and in the charging station, will drive rail voltages—and with multiple voltage options comes competing semiconductor requirements. This article explores how implementation of different plug types and charging standards are impacting infrastructure scaling and accessibility, and how these may impact wide bandgap (WBG) semiconductor needs going forward.