{"title":"生物分子系统中的噪声:建模、分析和控制意义","authors":"Corentin Briat, Mustafa Khammash","doi":"10.1146/annurev-control-042920-101825","DOIUrl":null,"url":null,"abstract":"While noise is generally associated with uncertainties and often has a negative connotation in engineering, living organisms have evolved to adapt to (and even exploit) such uncertainty to ensure the survival of a species or implement certain functions that would have been difficult or even impossible otherwise. In this article, we review the role and impact of noise in systems and synthetic biology, with a particular emphasis on its role in the genetic control of biological systems, an area we refer to as cybergenetics. The main modeling paradigm is that of stochastic reaction networks, whose applicability goes beyond biology, as these networks can represent any population dynamics system, including ecological, epidemiological, and opinion dynamics networks. We review different ways to mathematically represent these systems, and we notably argue that the concept of ergodicity presents a particularly suitable way to characterize their stability. We then discuss noise-induced properties and show that noise can be both an asset and a nuisance in this setting. Finally, we discuss recent results on (stochastic) cybergenetics and explore their relationships to noise. Along the way, we detail the different technical and biological constraints that need to be respected when designing synthetic biological circuits. Finally, we discuss the concepts, problems, and solutions exposed in the article; raise criticisms and concerns about current ideas and approaches; suggest current (open) problems with potential solutions; and provide some ideas for future research directions.","PeriodicalId":29961,"journal":{"name":"Annual Review of Control Robotics and Autonomous Systems","volume":"1 1","pages":"0"},"PeriodicalIF":11.2000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noise in Biomolecular Systems: Modeling, Analysis, and Control Implications\",\"authors\":\"Corentin Briat, Mustafa Khammash\",\"doi\":\"10.1146/annurev-control-042920-101825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While noise is generally associated with uncertainties and often has a negative connotation in engineering, living organisms have evolved to adapt to (and even exploit) such uncertainty to ensure the survival of a species or implement certain functions that would have been difficult or even impossible otherwise. In this article, we review the role and impact of noise in systems and synthetic biology, with a particular emphasis on its role in the genetic control of biological systems, an area we refer to as cybergenetics. The main modeling paradigm is that of stochastic reaction networks, whose applicability goes beyond biology, as these networks can represent any population dynamics system, including ecological, epidemiological, and opinion dynamics networks. We review different ways to mathematically represent these systems, and we notably argue that the concept of ergodicity presents a particularly suitable way to characterize their stability. We then discuss noise-induced properties and show that noise can be both an asset and a nuisance in this setting. Finally, we discuss recent results on (stochastic) cybergenetics and explore their relationships to noise. Along the way, we detail the different technical and biological constraints that need to be respected when designing synthetic biological circuits. Finally, we discuss the concepts, problems, and solutions exposed in the article; raise criticisms and concerns about current ideas and approaches; suggest current (open) problems with potential solutions; and provide some ideas for future research directions.\",\"PeriodicalId\":29961,\"journal\":{\"name\":\"Annual Review of Control Robotics and Autonomous Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Control Robotics and Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-control-042920-101825\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Control Robotics and Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-control-042920-101825","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Noise in Biomolecular Systems: Modeling, Analysis, and Control Implications
While noise is generally associated with uncertainties and often has a negative connotation in engineering, living organisms have evolved to adapt to (and even exploit) such uncertainty to ensure the survival of a species or implement certain functions that would have been difficult or even impossible otherwise. In this article, we review the role and impact of noise in systems and synthetic biology, with a particular emphasis on its role in the genetic control of biological systems, an area we refer to as cybergenetics. The main modeling paradigm is that of stochastic reaction networks, whose applicability goes beyond biology, as these networks can represent any population dynamics system, including ecological, epidemiological, and opinion dynamics networks. We review different ways to mathematically represent these systems, and we notably argue that the concept of ergodicity presents a particularly suitable way to characterize their stability. We then discuss noise-induced properties and show that noise can be both an asset and a nuisance in this setting. Finally, we discuss recent results on (stochastic) cybergenetics and explore their relationships to noise. Along the way, we detail the different technical and biological constraints that need to be respected when designing synthetic biological circuits. Finally, we discuss the concepts, problems, and solutions exposed in the article; raise criticisms and concerns about current ideas and approaches; suggest current (open) problems with potential solutions; and provide some ideas for future research directions.
期刊介绍:
The Annual Review of Control, Robotics, and Autonomous Systems offers comprehensive reviews on theoretical and applied developments influencing autonomous and semiautonomous systems engineering. Major areas covered include control, robotics, mechanics, optimization, communication, information theory, machine learning, computing, and signal processing. The journal extends its reach beyond engineering to intersect with fields like biology, neuroscience, and human behavioral sciences. The current volume has transitioned to open access through the Subscribe to Open program, with all articles published under a CC BY license.