微石灰对环境固化蔗渣基地聚合物混凝土的影响

Keithy Kamau, Benard Omondi, Janet Oyaro
{"title":"微石灰对环境固化蔗渣基地聚合物混凝土的影响","authors":"Keithy Kamau, Benard Omondi, Janet Oyaro","doi":"10.28932/jts.v19i2.7303","DOIUrl":null,"url":null,"abstract":"Geopolymer concrete has been the ideal replacement for Ordinary Portland cement concrete in producing green concrete. The binder in geopolymer concrete is a cementitious paste made from amorphous Aluminosilicate and activated by an Alkaline solution. The geopolymerization process is initiated at elevated temperatures. Thus, the curing requires elevated temperatures. This curing method limits the application of geopolymer concrete in the construction industry. In a geopolymer mix, the presence of Calcium ions allows the formation of Calcium Aluminate Silicate and Calcium Silicate Hydrate gels, allowing ambient temperature curing. Therefore, this study investigates the effect of micro lime on the Sugarcane Bagasse Ash-based geopolymer concrete. The micro lime was added to the geopolymer concrete in 1, 3, 5 and 7% by the Sugarcane Bagasse Ash weight. A mix design was based on a Densified Mix Design Algorithm. The tests carried out included compressive strength and water absorption. Ambient curing of the SCBA-based geopolymer concrete was achieved with 1% of the micro lime. The compressive strength increased with the increase of the micro lime, 10N/mm2 at 1%, to 18.25N/mm2 at 7% micro lime. The ambient temperature-cured geopolymer concrete at 3% micro lime had the lowest water absorption rate.","PeriodicalId":52838,"journal":{"name":"Jurnal Teknik Sipil","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Micro Lime on The Ambient Cured Sugarcane Bagasse Ash-Based Geopolymer Concrete\",\"authors\":\"Keithy Kamau, Benard Omondi, Janet Oyaro\",\"doi\":\"10.28932/jts.v19i2.7303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geopolymer concrete has been the ideal replacement for Ordinary Portland cement concrete in producing green concrete. The binder in geopolymer concrete is a cementitious paste made from amorphous Aluminosilicate and activated by an Alkaline solution. The geopolymerization process is initiated at elevated temperatures. Thus, the curing requires elevated temperatures. This curing method limits the application of geopolymer concrete in the construction industry. In a geopolymer mix, the presence of Calcium ions allows the formation of Calcium Aluminate Silicate and Calcium Silicate Hydrate gels, allowing ambient temperature curing. Therefore, this study investigates the effect of micro lime on the Sugarcane Bagasse Ash-based geopolymer concrete. The micro lime was added to the geopolymer concrete in 1, 3, 5 and 7% by the Sugarcane Bagasse Ash weight. A mix design was based on a Densified Mix Design Algorithm. The tests carried out included compressive strength and water absorption. Ambient curing of the SCBA-based geopolymer concrete was achieved with 1% of the micro lime. The compressive strength increased with the increase of the micro lime, 10N/mm2 at 1%, to 18.25N/mm2 at 7% micro lime. The ambient temperature-cured geopolymer concrete at 3% micro lime had the lowest water absorption rate.\",\"PeriodicalId\":52838,\"journal\":{\"name\":\"Jurnal Teknik Sipil\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik Sipil\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28932/jts.v19i2.7303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Sipil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28932/jts.v19i2.7303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生产绿色混凝土方面,地聚合物混凝土已成为普通硅酸盐水泥混凝土的理想替代品。地聚合物混凝土中的粘结剂是由无定形硅酸铝制成的胶凝体,并由碱性溶液激活。地聚合过程是在高温下开始的。因此,固化需要提高温度。这种养护方法限制了地聚合物混凝土在建筑工业中的应用。在地聚合物混合物中,钙离子的存在允许形成铝酸钙硅酸盐和水合硅酸钙凝胶,允许环境温度固化。因此,本研究考察了微石灰对蔗渣基地聚合物混凝土的影响。将微石灰按蔗渣灰分重量的1、3、5、7%添加到地聚合物混凝土中。采用密集混合设计算法进行混合设计。进行的试验包括抗压强度和吸水率。用1%的微石灰实现了scba基地聚合物混凝土的环境养护。抗压强度随微石灰添加量的增加而增加,微石灰添加量为1%时为10N/mm2,微石灰添加量为7%时为18.25N/mm2。3%微石灰常温固化的地聚合物混凝土吸水率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Micro Lime on The Ambient Cured Sugarcane Bagasse Ash-Based Geopolymer Concrete
Geopolymer concrete has been the ideal replacement for Ordinary Portland cement concrete in producing green concrete. The binder in geopolymer concrete is a cementitious paste made from amorphous Aluminosilicate and activated by an Alkaline solution. The geopolymerization process is initiated at elevated temperatures. Thus, the curing requires elevated temperatures. This curing method limits the application of geopolymer concrete in the construction industry. In a geopolymer mix, the presence of Calcium ions allows the formation of Calcium Aluminate Silicate and Calcium Silicate Hydrate gels, allowing ambient temperature curing. Therefore, this study investigates the effect of micro lime on the Sugarcane Bagasse Ash-based geopolymer concrete. The micro lime was added to the geopolymer concrete in 1, 3, 5 and 7% by the Sugarcane Bagasse Ash weight. A mix design was based on a Densified Mix Design Algorithm. The tests carried out included compressive strength and water absorption. Ambient curing of the SCBA-based geopolymer concrete was achieved with 1% of the micro lime. The compressive strength increased with the increase of the micro lime, 10N/mm2 at 1%, to 18.25N/mm2 at 7% micro lime. The ambient temperature-cured geopolymer concrete at 3% micro lime had the lowest water absorption rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
PLANNING FOR THE DEVELOPMENT OF A DRINKING WATER DISTRIBUTION SYSTEM NETWORK IN SUNGAI PINYUH DETERMINATION OF DISCHARGE COEFFICIENT THROUGH LABORATORY TESTING USING BROAD-CRESTED WEIR DETERMINATION OF REPRESENTATIVE MOCK MODEL PARAMETERS FOR MONTHLY DISCHARGE CURVE DEVELOPMENT IN THE UPPER KAPUAS RIVER BASIN FLOW HYDROGRAPH GENERATION FOR MELAWI SUB-WATERSHED USING THE SNYDER SYNTHETIC UNIT HYDROGRAPH MODEL BRACKISH WATER DESALINATION IN SUNGAI ITIK AREA USING REVERSE OSMOSIS (RO) METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1