基于在线监测的针织机生产率预测模型

IF 0.7 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES Fibres & Textiles in Eastern Europe Pub Date : 2023-10-01 DOI:10.2478/ftee-2023-0035
Sherien Elkateb, Ahmed Métwalli, Abdelrahman Shendy, Karim Moussa, Ahmed E. B. Abu-Elanien
{"title":"基于在线监测的针织机生产率预测模型","authors":"Sherien Elkateb, Ahmed Métwalli, Abdelrahman Shendy, Karim Moussa, Ahmed E. B. Abu-Elanien","doi":"10.2478/ftee-2023-0035","DOIUrl":null,"url":null,"abstract":"Abstract Recently, Industry 4.0 introduced a breakthrough in the textile industry to meet customer demands. This study aimed to accurately estimate the production rate of a knitting machine through an online monitoring system using the Internet of Things (IoT) and machine learning (ML) concepts. Experimentally, a double knitting machine was attached with sensors for gathering data of the machine speed, yarn feeder speed and stitch length while other production variables remained constant. Two prediction models were introduced since correlation results revealed multicollinearity issues among the parameters measured. The second model achieved a prediction accuracy of 100 %. Thus, it presents a novel formula of production calculation.","PeriodicalId":12309,"journal":{"name":"Fibres & Textiles in Eastern Europe","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Monitoring-Based Prediction Model of Knitting Machine Productivity\",\"authors\":\"Sherien Elkateb, Ahmed Métwalli, Abdelrahman Shendy, Karim Moussa, Ahmed E. B. Abu-Elanien\",\"doi\":\"10.2478/ftee-2023-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, Industry 4.0 introduced a breakthrough in the textile industry to meet customer demands. This study aimed to accurately estimate the production rate of a knitting machine through an online monitoring system using the Internet of Things (IoT) and machine learning (ML) concepts. Experimentally, a double knitting machine was attached with sensors for gathering data of the machine speed, yarn feeder speed and stitch length while other production variables remained constant. Two prediction models were introduced since correlation results revealed multicollinearity issues among the parameters measured. The second model achieved a prediction accuracy of 100 %. Thus, it presents a novel formula of production calculation.\",\"PeriodicalId\":12309,\"journal\":{\"name\":\"Fibres & Textiles in Eastern Europe\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibres & Textiles in Eastern Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ftee-2023-0035\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibres & Textiles in Eastern Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ftee-2023-0035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

最近,工业4.0在纺织行业引入了突破,以满足客户需求。本研究旨在通过使用物联网(IoT)和机器学习(ML)概念的在线监测系统,准确估计针织机的生产率。实验中,在双纬针织机上安装传感器,在其他生产变量保持不变的情况下,采集机器速度、送纱速度和针长数据。由于相关结果揭示了测量参数之间的多重共线性问题,引入了两种预测模型。第二个模型的预测精度达到100%。从而提出了一种新的产量计算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Monitoring-Based Prediction Model of Knitting Machine Productivity
Abstract Recently, Industry 4.0 introduced a breakthrough in the textile industry to meet customer demands. This study aimed to accurately estimate the production rate of a knitting machine through an online monitoring system using the Internet of Things (IoT) and machine learning (ML) concepts. Experimentally, a double knitting machine was attached with sensors for gathering data of the machine speed, yarn feeder speed and stitch length while other production variables remained constant. Two prediction models were introduced since correlation results revealed multicollinearity issues among the parameters measured. The second model achieved a prediction accuracy of 100 %. Thus, it presents a novel formula of production calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibres & Textiles in Eastern Europe
Fibres & Textiles in Eastern Europe 工程技术-材料科学:纺织
CiteScore
1.60
自引率
11.10%
发文量
12
审稿时长
13.5 months
期刊介绍: FIBRES & TEXTILES in Eastern Europe is a peer reviewed bimonthly scientific journal devoted to current problems of fibre, textile and fibrous products’ science as well as general economic problems of textile industry worldwide. The content of the journal is available online as free open access. FIBRES & TEXTILES in Eastern Europe constitutes a forum for the exchange of information and the establishment of mutual contact for cooperation between scientific centres, as well as between science and industry.
期刊最新文献
Investigation of the Accelerated Ageing of Carbon-Epoxy Composites on their Mechanical Properties Knitted Heating Mats Evaluation of Insulation against Contact Heat, Radiant Heat and Sensory Comfort of Basalt Fabric-Based Composites with Parylene C Coating Digital Inheritance of Traditional Mongolian Robes of the Nayman Tribe Experimental Investigation on the Bending Behavior of Weft Interlaced Multilayered Woven Fabrics for Composite Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1