Jian Xie, Tianwei Qiu, Cui Zhou, Dongfang Lin, Sichun Long
{"title":"线性结构加权总最小二乘问题的算法与统计分析","authors":"Jian Xie, Tianwei Qiu, Cui Zhou, Dongfang Lin, Sichun Long","doi":"10.1016/j.geog.2023.06.001","DOIUrl":null,"url":null,"abstract":"Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations.","PeriodicalId":46398,"journal":{"name":"Geodesy and Geodynamics","volume":"2 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms and statistical analysis for linear structured weighted total least squares problem\",\"authors\":\"Jian Xie, Tianwei Qiu, Cui Zhou, Dongfang Lin, Sichun Long\",\"doi\":\"10.1016/j.geog.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations.\",\"PeriodicalId\":46398,\"journal\":{\"name\":\"Geodesy and Geodynamics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Geodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.geog.2023.06.001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Geodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.geog.2023.06.001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Algorithms and statistical analysis for linear structured weighted total least squares problem
Weighted total least squares (WTLS) have been regarded as the standard tool for the errors-in-variables (EIV) model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors. However, in many geodetic applications, some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix. It is called the linear structured EIV (LSEIV) model. Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications. On the one hand, the functional part of the LSEIV model is modified into the errors-in-observations (EIO) model. On the other hand, the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix. The algorithms are derived through the Lagrange multipliers method and linear approximation. The estimation principles and iterative formula of the parameters are proven to be consistent. The first-order approximate variance-covariance matrix (VCM) of the parameters is also derived. A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach. Afterwards, the least squares (LS), total least squares (TLS) and linear structured weighted total least squares (LSWTLS) solutions are compared and the accuracy evaluation formula is proven to be feasible and effective. Finally, the LSWTLS is applied to the field of deformation analysis, which yields a better result than the traditional LS and TLS estimations.
期刊介绍:
Geodesy and Geodynamics launched in October, 2010, and is a bimonthly publication. It is sponsored jointly by Institute of Seismology, China Earthquake Administration, Science Press, and another six agencies. It is an international journal with a Chinese heart. Geodesy and Geodynamics is committed to the publication of quality scientific papers in English in the fields of geodesy and geodynamics from authors around the world. Its aim is to promote a combination between Geodesy and Geodynamics, deepen the application of Geodesy in the field of Geoscience and quicken worldwide fellows'' understanding on scientific research activity in China. It mainly publishes newest research achievements in the field of Geodesy, Geodynamics, Science of Disaster and so on. Aims and Scope: new theories and methods of geodesy; new results of monitoring and studying crustal movement and deformation by using geodetic theories and methods; new ways and achievements in earthquake-prediction investigation by using geodetic theories and methods; new results of crustal movement and deformation studies by using other geologic, hydrological, and geophysical theories and methods; new results of satellite gravity measurements; new development and results of space-to-ground observation technology.