{"title":"基于混合深度学习模型的电力系统高效管理负荷预测","authors":"Saikat Gochhait, Deepak Sharrma, Rutvij Jhaveri, Rajkumar Singh Rathore","doi":"10.2174/0126662558256168231003074148","DOIUrl":null,"url":null,"abstract":"aims: Load forecasting with for efficient power system management background: Short-term energy load forecasting (STELF) is a valuable tool for utility companies and energy providers because it allows them to predict and plan for changes in energy. Method:: 1D CNN BI-LSTM model incorporating convolutional layers. method: 1D CNN BI-LSTM model incorporating convolutional layers Result:: The results provide the Root Mean Square Error of 0.952. The results shows that the proposed model outperforms the existing CNN based model with improved accuracy, hourly prediction, load forecasting. Conclusion:: The proposed model has several applications, including optimal energy allocation and demand-side management, which are essential for smart grid operation and control. The model’s ability to accurately management forecast electricity load will enable power utilities to optimize their generation.","PeriodicalId":36514,"journal":{"name":"Recent Advances in Computer Science and Communications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Forecasting with Hybrid Deep Learning Model for Efficient Power System Management\",\"authors\":\"Saikat Gochhait, Deepak Sharrma, Rutvij Jhaveri, Rajkumar Singh Rathore\",\"doi\":\"10.2174/0126662558256168231003074148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"aims: Load forecasting with for efficient power system management background: Short-term energy load forecasting (STELF) is a valuable tool for utility companies and energy providers because it allows them to predict and plan for changes in energy. Method:: 1D CNN BI-LSTM model incorporating convolutional layers. method: 1D CNN BI-LSTM model incorporating convolutional layers Result:: The results provide the Root Mean Square Error of 0.952. The results shows that the proposed model outperforms the existing CNN based model with improved accuracy, hourly prediction, load forecasting. Conclusion:: The proposed model has several applications, including optimal energy allocation and demand-side management, which are essential for smart grid operation and control. The model’s ability to accurately management forecast electricity load will enable power utilities to optimize their generation.\",\"PeriodicalId\":36514,\"journal\":{\"name\":\"Recent Advances in Computer Science and Communications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Computer Science and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126662558256168231003074148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Computer Science and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126662558256168231003074148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Load Forecasting with Hybrid Deep Learning Model for Efficient Power System Management
aims: Load forecasting with for efficient power system management background: Short-term energy load forecasting (STELF) is a valuable tool for utility companies and energy providers because it allows them to predict and plan for changes in energy. Method:: 1D CNN BI-LSTM model incorporating convolutional layers. method: 1D CNN BI-LSTM model incorporating convolutional layers Result:: The results provide the Root Mean Square Error of 0.952. The results shows that the proposed model outperforms the existing CNN based model with improved accuracy, hourly prediction, load forecasting. Conclusion:: The proposed model has several applications, including optimal energy allocation and demand-side management, which are essential for smart grid operation and control. The model’s ability to accurately management forecast electricity load will enable power utilities to optimize their generation.