H2@X12N12和H2O@X12N12 (X = B和Al)分子中同位素效应的计算研究

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Main Group Chemistry Pub Date : 2023-10-06 DOI:10.3233/mgc-230074
Reza Ghiasi, Alireza Valizadeh, Hoda Pasdar
{"title":"H2@X12N12和H2O@X12N12 (X = B和Al)分子中同位素效应的计算研究","authors":"Reza Ghiasi, Alireza Valizadeh, Hoda Pasdar","doi":"10.3233/mgc-230074","DOIUrl":null,"url":null,"abstract":"In this work, we reported isotopic effect in H2@X12N12 and H2O@X12N12 (X = B and Al) molecules at LC-ωPBE/6-311 G(d,p) level of theory. Zero-point energies values (ZPEs) of H2, H2O, H2@X12N12 and H2O@X12N12 molecules were calculated. Isotopes influenced the excess energies attained by molecules due to compression. The changes in ZPE of H2@X12N12 and H2O@X12N12 and those isotopic molecules intensely surpass those of the H2 and H2O molecules, subsequent in the great deuterium and tritium isotope effects. The excess of compression energy (Δ ɛ) obtained by the molecule under compression was sensibly, about 5.00–2.60 (X = B) and 1.48–2.63 (X = Al) kcal/mol. Larger kH/kD and kH/kT values were found in the presence of X = B than X = Al. These outcomes were recommended as a probe for analysis molecular compression of enzymatic positions; they may be significant for exploring extremely great experimental isotope effects in various enzymatic reactions, where they were ascribed to the tunneling.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational investigation of isotopic effect in H2@X12N12 and H2O@X12N12 (X = B and Al) molecules\",\"authors\":\"Reza Ghiasi, Alireza Valizadeh, Hoda Pasdar\",\"doi\":\"10.3233/mgc-230074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we reported isotopic effect in H2@X12N12 and H2O@X12N12 (X = B and Al) molecules at LC-ωPBE/6-311 G(d,p) level of theory. Zero-point energies values (ZPEs) of H2, H2O, H2@X12N12 and H2O@X12N12 molecules were calculated. Isotopes influenced the excess energies attained by molecules due to compression. The changes in ZPE of H2@X12N12 and H2O@X12N12 and those isotopic molecules intensely surpass those of the H2 and H2O molecules, subsequent in the great deuterium and tritium isotope effects. The excess of compression energy (Δ ɛ) obtained by the molecule under compression was sensibly, about 5.00–2.60 (X = B) and 1.48–2.63 (X = Al) kcal/mol. Larger kH/kD and kH/kT values were found in the presence of X = B than X = Al. These outcomes were recommended as a probe for analysis molecular compression of enzymatic positions; they may be significant for exploring extremely great experimental isotope effects in various enzymatic reactions, where they were ascribed to the tunneling.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-230074\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgc-230074","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了LC-ωPBE/6-311 G(d,p)水平下H2@X12N12和H2O@X12N12 (X = B和Al)分子的同位素效应。计算了H2、H2O、H2@X12N12和H2O@X12N12分子的零点能值(ZPEs)。同位素影响了分子由于压缩而获得的多余能量。H2@X12N12和H2O@X12N12及其同位素分子的ZPE变化强烈超过H2和H2O分子,随后出现了较大的氘和氚同位素效应。受压分子获得的多余压缩能(Δ /)较为明显,分别为5.00-2.60 kcal/mol (X = B)和1.48-2.63 kcal/mol (X = Al)。X = B存在时kH/kD和kH/kT值大于X = Al存在时kH/kD和kH/kT值。这些结果被推荐作为分析酶位置分子压缩的探针;它们可能对探索各种酶促反应中极其巨大的实验同位素效应具有重要意义,在这些反应中,它们被归因于隧道效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational investigation of isotopic effect in H2@X12N12 and H2O@X12N12 (X = B and Al) molecules
In this work, we reported isotopic effect in H2@X12N12 and H2O@X12N12 (X = B and Al) molecules at LC-ωPBE/6-311 G(d,p) level of theory. Zero-point energies values (ZPEs) of H2, H2O, H2@X12N12 and H2O@X12N12 molecules were calculated. Isotopes influenced the excess energies attained by molecules due to compression. The changes in ZPE of H2@X12N12 and H2O@X12N12 and those isotopic molecules intensely surpass those of the H2 and H2O molecules, subsequent in the great deuterium and tritium isotope effects. The excess of compression energy (Δ ɛ) obtained by the molecule under compression was sensibly, about 5.00–2.60 (X = B) and 1.48–2.63 (X = Al) kcal/mol. Larger kH/kD and kH/kT values were found in the presence of X = B than X = Al. These outcomes were recommended as a probe for analysis molecular compression of enzymatic positions; they may be significant for exploring extremely great experimental isotope effects in various enzymatic reactions, where they were ascribed to the tunneling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Chemistry
Main Group Chemistry 化学-化学综合
CiteScore
2.00
自引率
26.70%
发文量
65
审稿时长
>12 weeks
期刊介绍: Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.
期刊最新文献
Antibacterial activity of copper-coated carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition against Escherichia coli and Staphylococcus aureus Sulfone-infused covalent organic polymer derived from poly(2-aminothiophenol) and erythrosine B as an excellent tool for C–H activation Novel ionic liquid systems based on three-nitro phenoxide: Spectroscopic and electronic characterization using theoretical and experimental study A review on synthesis of coumarin derived schiff’s base metal complexes and their control over E. coli bacterium Synthesis and characterization of chemosensor: Investigation of cyanide sensing and study as live cell imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1