淹没树冠上振荡流动的线性和非线性频域建模

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL Journal of Hydraulic Research Pub Date : 2023-09-03 DOI:10.1080/00221686.2023.2231433
Otto E. Neshamar, Niels G. Jacobsen, Dominic A. van der A, Tom O'Donoghue
{"title":"淹没树冠上振荡流动的线性和非线性频域建模","authors":"Otto E. Neshamar, Niels G. Jacobsen, Dominic A. van der A, Tom O'Donoghue","doi":"10.1080/00221686.2023.2231433","DOIUrl":null,"url":null,"abstract":"An analytical and experimental study of flow velocities within submerged canopies of rigid cylinders under oscillatory flows is presented, providing insights into the momentum transfer mechanisms between the different flow harmonics. The experimental dataset covers an unprecedented wide range of flow amplitudes with in-canopy velocity reductions ranging between 0.2 and 0.8 of the free stream velocity (from inertia- to drag-dominated in-canopy flow). Results from the analytical model with nonlinear drag compare favourably to the experimental data. Having application of theories for free surface waves over canopies in mind, the effects of linearization of the drag are analysed by comparing sinusoidal and nonlinear model predictions. Finally, a unified prediction formula for in-canopy velocities for sinusoidal, velocity-skewed, and velocity-asymmetric free stream velocities is presented. The formula depends on two non-dimensional parameters related to inertia and drag forces, and the unified formula allows for easy assessment of the maximum in-canopy velocity.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and nonlinear frequency-domain modelling of oscillatory flow over submerged canopies\",\"authors\":\"Otto E. Neshamar, Niels G. Jacobsen, Dominic A. van der A, Tom O'Donoghue\",\"doi\":\"10.1080/00221686.2023.2231433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical and experimental study of flow velocities within submerged canopies of rigid cylinders under oscillatory flows is presented, providing insights into the momentum transfer mechanisms between the different flow harmonics. The experimental dataset covers an unprecedented wide range of flow amplitudes with in-canopy velocity reductions ranging between 0.2 and 0.8 of the free stream velocity (from inertia- to drag-dominated in-canopy flow). Results from the analytical model with nonlinear drag compare favourably to the experimental data. Having application of theories for free surface waves over canopies in mind, the effects of linearization of the drag are analysed by comparing sinusoidal and nonlinear model predictions. Finally, a unified prediction formula for in-canopy velocities for sinusoidal, velocity-skewed, and velocity-asymmetric free stream velocities is presented. The formula depends on two non-dimensional parameters related to inertia and drag forces, and the unified formula allows for easy assessment of the maximum in-canopy velocity.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2231433\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2231433","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文对振荡流动条件下刚性圆柱淹没冠内的流动速度进行了分析和实验研究,为不同流动谐波之间的动量传递机制提供了见解。实验数据集涵盖了前所未有的大范围流动幅度,冠层内流速降低幅度在自由流速度的0.2 - 0.8之间(从惯性到阻力主导的冠层内流动)。考虑非线性阻力的分析模型计算结果与实验数据吻合较好。考虑到树冠上自由表面波理论的应用,通过比较正弦模型和非线性模型预测,分析了阻力线性化的影响。最后,给出了正弦波、速度偏转和速度不对称自由流速度的冠层内速度统一预测公式。该公式依赖于与惯性和阻力有关的两个非维度参数,统一的公式可以方便地评估最大舱内速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear and nonlinear frequency-domain modelling of oscillatory flow over submerged canopies
An analytical and experimental study of flow velocities within submerged canopies of rigid cylinders under oscillatory flows is presented, providing insights into the momentum transfer mechanisms between the different flow harmonics. The experimental dataset covers an unprecedented wide range of flow amplitudes with in-canopy velocity reductions ranging between 0.2 and 0.8 of the free stream velocity (from inertia- to drag-dominated in-canopy flow). Results from the analytical model with nonlinear drag compare favourably to the experimental data. Having application of theories for free surface waves over canopies in mind, the effects of linearization of the drag are analysed by comparing sinusoidal and nonlinear model predictions. Finally, a unified prediction formula for in-canopy velocities for sinusoidal, velocity-skewed, and velocity-asymmetric free stream velocities is presented. The formula depends on two non-dimensional parameters related to inertia and drag forces, and the unified formula allows for easy assessment of the maximum in-canopy velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
期刊最新文献
Air–water flows Lattice Boltzmann simulation of plunging breakers Simulation of a Pelton turbine using the moving particle simulation method: application to two challenging situations Flexural-gravity wave forces acting on a submerged spherical object over a flexible sea bed A finite volume model for maintaining stationarity and reducing spurious oscillations in simulations of sewer system filling and emptying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1