{"title":"铷中失谐微波跃迁的里德伯激发","authors":"Erik Brekke, Cordell Umland","doi":"10.1364/josab.502442","DOIUrl":null,"url":null,"abstract":"We study the excitation of Rydberg states in warm rubidium vapor. Using an inverted wavelength excitation scheme, we observe the effect of microwave coupling between Rydberg states through electromagnetically induced transparency. We observe AC stark shifts of the Rydberg states from the microwave coupling, and demonstrate detuned excitation to a secondary Rydberg state. These results show flexibility in the excitation process and state selection necessary for a variety of wave-mixing processes using Rydberg states.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rydberg excitation through detuned microwave1transition in rubidium\",\"authors\":\"Erik Brekke, Cordell Umland\",\"doi\":\"10.1364/josab.502442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the excitation of Rydberg states in warm rubidium vapor. Using an inverted wavelength excitation scheme, we observe the effect of microwave coupling between Rydberg states through electromagnetically induced transparency. We observe AC stark shifts of the Rydberg states from the microwave coupling, and demonstrate detuned excitation to a secondary Rydberg state. These results show flexibility in the excitation process and state selection necessary for a variety of wave-mixing processes using Rydberg states.\",\"PeriodicalId\":17280,\"journal\":{\"name\":\"Journal of The Optical Society of America B-optical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America B-optical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.502442\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.502442","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Rydberg excitation through detuned microwave1transition in rubidium
We study the excitation of Rydberg states in warm rubidium vapor. Using an inverted wavelength excitation scheme, we observe the effect of microwave coupling between Rydberg states through electromagnetically induced transparency. We observe AC stark shifts of the Rydberg states from the microwave coupling, and demonstrate detuned excitation to a secondary Rydberg state. These results show flexibility in the excitation process and state selection necessary for a variety of wave-mixing processes using Rydberg states.
期刊介绍:
The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include:
Advanced Instrumentation and Measurements
Fiber Optics and Fiber Lasers
Lasers and Other Light Sources from THz to XUV
Light-Induced Phenomena
Nonlinear and High Field Optics
Optical Materials
Optics Modes and Structured Light
Optomechanics
Metamaterials
Nanomaterials
Photonics and Semiconductor Optics
Physical Optics
Plasmonics
Quantum Optics and Entanglement
Quantum Key Distribution
Spectroscopy and Atomic or Molecular Optics
Superresolution and Advanced Imaging
Surface Optics
Ultrafast Optical Phenomena
Wave Guiding and Optical Confinement
JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.