{"title":"磁化石:深时空的遗迹与记录","authors":"Sarah P. Slotznick, Ramon Egli, Ioan Lascu","doi":"10.2138/gselements.19.4.215","DOIUrl":null,"url":null,"abstract":"Magnetofossils are magnetic nanoparticles that represent the fossil remains of microorganisms that biomineralize magnetic minerals in a genetically controlled manner. Most magnetofossils found in the geologic record are produced by magnetotactic bacteria, which use them for navigating within their living environment. Magnetofossils can be identified using a combination of magnetic and imaging techniques. A common attribute of magnetofossils, although not pervasive, is that they are arranged in chains, which determines their specific magnetic properties. Magnetofossil signatures have been reported from ancient rocks to modern sediments and even in extraterrestrial materials. They provide a window into biomineralization, past environments, and ancient magnetic fields, as well as supplying fuel for questions on the origin of life in the Solar System.","PeriodicalId":11643,"journal":{"name":"Elements","volume":"236 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetofossils: Relicts and Records of Deep Time and Space\",\"authors\":\"Sarah P. Slotznick, Ramon Egli, Ioan Lascu\",\"doi\":\"10.2138/gselements.19.4.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetofossils are magnetic nanoparticles that represent the fossil remains of microorganisms that biomineralize magnetic minerals in a genetically controlled manner. Most magnetofossils found in the geologic record are produced by magnetotactic bacteria, which use them for navigating within their living environment. Magnetofossils can be identified using a combination of magnetic and imaging techniques. A common attribute of magnetofossils, although not pervasive, is that they are arranged in chains, which determines their specific magnetic properties. Magnetofossil signatures have been reported from ancient rocks to modern sediments and even in extraterrestrial materials. They provide a window into biomineralization, past environments, and ancient magnetic fields, as well as supplying fuel for questions on the origin of life in the Solar System.\",\"PeriodicalId\":11643,\"journal\":{\"name\":\"Elements\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2138/gselements.19.4.215\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2138/gselements.19.4.215","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Magnetofossils: Relicts and Records of Deep Time and Space
Magnetofossils are magnetic nanoparticles that represent the fossil remains of microorganisms that biomineralize magnetic minerals in a genetically controlled manner. Most magnetofossils found in the geologic record are produced by magnetotactic bacteria, which use them for navigating within their living environment. Magnetofossils can be identified using a combination of magnetic and imaging techniques. A common attribute of magnetofossils, although not pervasive, is that they are arranged in chains, which determines their specific magnetic properties. Magnetofossil signatures have been reported from ancient rocks to modern sediments and even in extraterrestrial materials. They provide a window into biomineralization, past environments, and ancient magnetic fields, as well as supplying fuel for questions on the origin of life in the Solar System.
期刊介绍:
Elements is an international magazine of mineralogy, petrology, and geochemistry.
Published bimonthly, every issue explores a theme of broad and current interest. Elements publishes invited peer-reviewed articles for each thematic collection of papers. Topics of interest can be proposed to the editors who will review every proposal submitted.
Elements also presents regular features including a opinion articles, calendar of events, short course announcements, awards, conference reports, policy news, as well as news of the 18 participating societies.