{"title":"干涉合成孔径雷达观测地下和原地浸出开采变形特征的时空分析和体积表征","authors":"Elena C. Reinisch, Bradley G. Henderson","doi":"10.1117/1.jrs.17.044511","DOIUrl":null,"url":null,"abstract":"The effect of uranium mining on ground deformation is a relatively unexplored area, especially in terms of surface subsidence related to subsurface ore removal. We use interferometric synthetic aperture radar and spatiotemporal techniques to characterize subsidence signals at the McArthur River underground mine in Canada and the Four Mile in situ leach mine in Australia. We enhance the signal-to-noise ratio of our datasets via time-series techniques and compare results from active periods with results during inactivity to establish a baseline for mining-related signals. We then relate observed surface subsidence to subsurface volumetric strain rates via a voxel parameterization and Bayesian, geostatistical inversion. We use priors on our volumetric strain rates to identify whether these rates are best attributed to ore removal or if additional factors are contributing to subsidence at these sites. We find that the subsidence at McArthur River is best explained by a combination of ore removal and thermal contraction resulting from ground freezing practices. Ore removal via solution extraction alone explains the subsidence at Four Mile, although the localized subsidence pattern and resulting strain rates suggest an intricate combination of sinks and sources in the field, possibly from injection and production well locations and the subsequent flow of solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal analysis and volumetric characterization of interferometric synthetic aperture radar-observed deformation signatures related to underground and in situ leach mining\",\"authors\":\"Elena C. Reinisch, Bradley G. Henderson\",\"doi\":\"10.1117/1.jrs.17.044511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of uranium mining on ground deformation is a relatively unexplored area, especially in terms of surface subsidence related to subsurface ore removal. We use interferometric synthetic aperture radar and spatiotemporal techniques to characterize subsidence signals at the McArthur River underground mine in Canada and the Four Mile in situ leach mine in Australia. We enhance the signal-to-noise ratio of our datasets via time-series techniques and compare results from active periods with results during inactivity to establish a baseline for mining-related signals. We then relate observed surface subsidence to subsurface volumetric strain rates via a voxel parameterization and Bayesian, geostatistical inversion. We use priors on our volumetric strain rates to identify whether these rates are best attributed to ore removal or if additional factors are contributing to subsidence at these sites. We find that the subsidence at McArthur River is best explained by a combination of ore removal and thermal contraction resulting from ground freezing practices. Ore removal via solution extraction alone explains the subsidence at Four Mile, although the localized subsidence pattern and resulting strain rates suggest an intricate combination of sinks and sources in the field, possibly from injection and production well locations and the subsequent flow of solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.17.044511\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jrs.17.044511","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatio-temporal analysis and volumetric characterization of interferometric synthetic aperture radar-observed deformation signatures related to underground and in situ leach mining
The effect of uranium mining on ground deformation is a relatively unexplored area, especially in terms of surface subsidence related to subsurface ore removal. We use interferometric synthetic aperture radar and spatiotemporal techniques to characterize subsidence signals at the McArthur River underground mine in Canada and the Four Mile in situ leach mine in Australia. We enhance the signal-to-noise ratio of our datasets via time-series techniques and compare results from active periods with results during inactivity to establish a baseline for mining-related signals. We then relate observed surface subsidence to subsurface volumetric strain rates via a voxel parameterization and Bayesian, geostatistical inversion. We use priors on our volumetric strain rates to identify whether these rates are best attributed to ore removal or if additional factors are contributing to subsidence at these sites. We find that the subsidence at McArthur River is best explained by a combination of ore removal and thermal contraction resulting from ground freezing practices. Ore removal via solution extraction alone explains the subsidence at Four Mile, although the localized subsidence pattern and resulting strain rates suggest an intricate combination of sinks and sources in the field, possibly from injection and production well locations and the subsequent flow of solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.