基于互信息和f分的混合随机森林特征选择模型用于早产儿分类

Himani S. Deshpande, Leena Ragha
{"title":"基于互信息和f分的混合随机森林特征选择模型用于早产儿分类","authors":"Himani S. Deshpande, Leena Ragha","doi":"10.1504/ijmei.2023.127257","DOIUrl":null,"url":null,"abstract":"Every woman's body is unique and will have some features playing a vital role contributing towards a healthy pregnancy and manually it is difficult to decide the important features to be observed to prevent the pregnancy complications. In this proposal we have consider 21 physical features of 903 women of varied age groups, economy status and health conditions. Variation and information-based random forest (VIBRF) hybrid model using mutual information and F-score is applied to evaluate each feature looking into the variation within the feature and mutual information across the features. We experimented using various classifiers, and it is observed that Gaussian NB has shown most significant improvement in terms of prediction accuracy, from 31% with all features to 80% with our feature selection process. Though SVM prediction accuracy is 84% it is observed AUC drastically improved for GNB by 10%. As it is a medical application, it is important to achieve higher AUC and so through this experiment it is concluded that GNB performs better with proposed model.","PeriodicalId":39126,"journal":{"name":"International Journal of Medical Engineering and Informatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid random forest-based feature selection model using mutual information and F-score for preterm birth classification\",\"authors\":\"Himani S. Deshpande, Leena Ragha\",\"doi\":\"10.1504/ijmei.2023.127257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every woman's body is unique and will have some features playing a vital role contributing towards a healthy pregnancy and manually it is difficult to decide the important features to be observed to prevent the pregnancy complications. In this proposal we have consider 21 physical features of 903 women of varied age groups, economy status and health conditions. Variation and information-based random forest (VIBRF) hybrid model using mutual information and F-score is applied to evaluate each feature looking into the variation within the feature and mutual information across the features. We experimented using various classifiers, and it is observed that Gaussian NB has shown most significant improvement in terms of prediction accuracy, from 31% with all features to 80% with our feature selection process. Though SVM prediction accuracy is 84% it is observed AUC drastically improved for GNB by 10%. As it is a medical application, it is important to achieve higher AUC and so through this experiment it is concluded that GNB performs better with proposed model.\",\"PeriodicalId\":39126,\"journal\":{\"name\":\"International Journal of Medical Engineering and Informatics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmei.2023.127257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2023.127257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

每个妇女的身体都是独特的,会有一些对健康怀孕起着至关重要作用的特征,人工很难决定需要观察的重要特征,以防止妊娠并发症。在这项建议中,我们考虑了903名不同年龄组妇女的21个身体特征、经济状况和健康状况。利用互信息和F-score的变化和信息随机森林(VIBRF)混合模型来评估每个特征,研究特征内部的变化和特征之间的互信息。我们使用各种分类器进行了实验,并观察到高斯NB在预测精度方面表现出最显著的改进,从所有特征的31%到我们的特征选择过程的80%。虽然SVM预测准确率为84%,但观察到GNB的AUC大幅提高了10%。由于是医疗应用,实现更高的AUC非常重要,因此通过本实验得出结论,采用所提出的模型,GNB具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid random forest-based feature selection model using mutual information and F-score for preterm birth classification
Every woman's body is unique and will have some features playing a vital role contributing towards a healthy pregnancy and manually it is difficult to decide the important features to be observed to prevent the pregnancy complications. In this proposal we have consider 21 physical features of 903 women of varied age groups, economy status and health conditions. Variation and information-based random forest (VIBRF) hybrid model using mutual information and F-score is applied to evaluate each feature looking into the variation within the feature and mutual information across the features. We experimented using various classifiers, and it is observed that Gaussian NB has shown most significant improvement in terms of prediction accuracy, from 31% with all features to 80% with our feature selection process. Though SVM prediction accuracy is 84% it is observed AUC drastically improved for GNB by 10%. As it is a medical application, it is important to achieve higher AUC and so through this experiment it is concluded that GNB performs better with proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
110
期刊介绍: IJMEI promotes an understanding of the structural/functional aspects of disease mechanisms and the application of technology towards the treatment/management of such diseases. It seeks to promote interdisciplinary collaboration between those interested in the theoretical and clinical aspects of medicine and to foster the application of computers and mathematics to problems arising from medical sciences. IJMEI includes authoritative review papers, the reporting of original research, and evaluation reports of new/existing techniques and devices. Each issue also contains a comprehensive information service. Topics covered include Hospital information/medical record systems, data protection/privacy Disease modelling/analysis, evidence-based clinical modelling/studies Computer-based patient/disease management systems Clinical trials/studies, outcome-based studies/analysis Electronic patient monitoring systems Nanotechnology in medicine, medical applications Tissue engineering, artificial organs, biomaterials design Healthcare standards, service standardisation Controlled medical terminology/vocabularies Nursing informatics, systems integration Healthcare/hospital management, economics Medical technology, intelligent instrumentation, telemedicine Medical/molecular imaging, disease management Bioinformatics, human genome studies/analysis Drug design.
期刊最新文献
ПЕРЕБІГ ВАГІТНОСТІ, ПОЛОГІВ, МОРФОЛОГІЧНІ ТА ІМУНОГІСТОХІМІЧНІ ОСОБЛИВОСТІ ПЛАЦЕНТИ У ВАГІТНИХ З КОРОНАВІРУСНОЮ ХВОРОБОЮ COVID-19 АВТОПСІЙНЕ ДОСЛІДЖЕННЯ: 125–РІЧНИЙ ДОСВІД РОБОТИ КАФЕДРИ ПАТОЛОГІЧНОЇ АНАТОМІЇ ЛЬВІВСЬКОГО НАЦІОНАЛЬНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ ІМЕНІ ДАНИЛА ГАЛИЦЬКОГО ЗМІНИ СЛИЗОВОГО БАР'ЄРУ У ПАЦІЄНТІВ ІЗ СИНДРОМОМ ПОДРАЗНЕНОГО КИШЕЧНИКА ПАТОМОРФОЛОГІЧНА ХАРАКТЕРИСТИКА КРИПТОКОКОЗУ ЛЕГЕНЬ ТА НИРОК ПРИ ВІЛ-ІНФЕКЦІЇ/СНІД ДИСТАНЦІЙНА ОСВІТА НА ПІСЛЯДИПЛОМНОМУ ЕТАПІ НАВЧАННЯ ЛІКАРІВ: ПРОБЛЕМНІ ПИТАННЯ ТА ЇХ ВИРІШЕННЯ НА СУЧАСНОМУ ЕТАПІ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1