用直接数值模拟表征沟道流动的粗糙度

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL Journal of Hydraulic Engineering Pub Date : 2023-11-01 DOI:10.1061/jhend8.hyeng-13666
Akshay Patil, Oliver Fringer
{"title":"用直接数值模拟表征沟道流动的粗糙度","authors":"Akshay Patil, Oliver Fringer","doi":"10.1061/jhend8.hyeng-13666","DOIUrl":null,"url":null,"abstract":": Turbulent flows over bumpy walls are ubiquitous and pose a fundamental challenge to various engineering applications such as coastal boundary layers, drag on ships, hydraulic conveyance networks, and bluff body aerodynamics, to name a few. In this study, we used direct numerical simulations (DNS) along with a direct-forcing immersed boundary method (IBM) to understand the connection between the roughness geometry and the mean flow drag. A bumpy wall was constructed using an array of randomly oriented ellipsoids characterized by the Corey shape factor ( C o ). We found that our results exactly validated the experimental studies by Nikuradse for sand-grain type roughness ( C o ¼ 1 . 0 ). Additionally, we observed that the mean flow drag increased for decreasing C o through an increase in the form-drag contribution and a decrease in the viscous drag. We also developed a relationship between the statistics of the bottom height distribution and the roughness parameter ( z 0 ) that may help explain the spread observed in the drag coefficient predicted when using conventional tools such as the Moody diagram. DOI: 10.1061/JHEND8.HYENG-13666. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.","PeriodicalId":16046,"journal":{"name":"Journal of Hydraulic Engineering","volume":"134 ","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the Roughness in Channel Flows Using Direct Numerical Simulations\",\"authors\":\"Akshay Patil, Oliver Fringer\",\"doi\":\"10.1061/jhend8.hyeng-13666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Turbulent flows over bumpy walls are ubiquitous and pose a fundamental challenge to various engineering applications such as coastal boundary layers, drag on ships, hydraulic conveyance networks, and bluff body aerodynamics, to name a few. In this study, we used direct numerical simulations (DNS) along with a direct-forcing immersed boundary method (IBM) to understand the connection between the roughness geometry and the mean flow drag. A bumpy wall was constructed using an array of randomly oriented ellipsoids characterized by the Corey shape factor ( C o ). We found that our results exactly validated the experimental studies by Nikuradse for sand-grain type roughness ( C o ¼ 1 . 0 ). Additionally, we observed that the mean flow drag increased for decreasing C o through an increase in the form-drag contribution and a decrease in the viscous drag. We also developed a relationship between the statistics of the bottom height distribution and the roughness parameter ( z 0 ) that may help explain the spread observed in the drag coefficient predicted when using conventional tools such as the Moody diagram. DOI: 10.1061/JHEND8.HYENG-13666. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.\",\"PeriodicalId\":16046,\"journal\":{\"name\":\"Journal of Hydraulic Engineering\",\"volume\":\"134 \",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/jhend8.hyeng-13666\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/jhend8.hyeng-13666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing the Roughness in Channel Flows Using Direct Numerical Simulations
: Turbulent flows over bumpy walls are ubiquitous and pose a fundamental challenge to various engineering applications such as coastal boundary layers, drag on ships, hydraulic conveyance networks, and bluff body aerodynamics, to name a few. In this study, we used direct numerical simulations (DNS) along with a direct-forcing immersed boundary method (IBM) to understand the connection between the roughness geometry and the mean flow drag. A bumpy wall was constructed using an array of randomly oriented ellipsoids characterized by the Corey shape factor ( C o ). We found that our results exactly validated the experimental studies by Nikuradse for sand-grain type roughness ( C o ¼ 1 . 0 ). Additionally, we observed that the mean flow drag increased for decreasing C o through an increase in the form-drag contribution and a decrease in the viscous drag. We also developed a relationship between the statistics of the bottom height distribution and the roughness parameter ( z 0 ) that may help explain the spread observed in the drag coefficient predicted when using conventional tools such as the Moody diagram. DOI: 10.1061/JHEND8.HYENG-13666. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Engineering
Journal of Hydraulic Engineering 工程技术-工程:机械
CiteScore
5.10
自引率
8.30%
发文量
0
审稿时长
10 months
期刊介绍: The Journal of Hydraulic Engineering accepts original contributions that describe the analysis and solutions of problems in hydraulic engineering. Technical Notes may present a problem, without solution, of common interest. Topics range from flows in closed conduits to free-surface flows (canals, rivers, lakes, and estuaries) to environmental fluid dynamics. Topics include transport processes involving fluids (multiphase flows) such as sediment and contaminant transport, and heat and gas transfers. Emphasis is placed on the presentation of concepts, methods, techniques, and results that advance knowledge and/or are suitable for general application in the hydraulic engineering profession.
期刊最新文献
Alcohol and cannabis co-use: Receptiveness to treatments and application to intervention planning. Effects of Air Vent Size and Location Design on Air Supply Efficiency in Flood Discharge Tunnel Operations Experimental Design and Protocol for Standardized Measurements of Rock Erodibility in Fluvial Impact Erosion Impacts of Rigid Vegetation on Gravity Currents Propagating in a Stratified Environment Process-Based Design Method for Pier Local Scour Depth under Clear-Water Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1