{"title":"基于流固耦合法的多喷嘴大尺寸气囊散弹过程研究","authors":"Jian Wang, Rui Liu, Kun Jiang, Daquan Song","doi":"10.1007/s42405-023-00664-7","DOIUrl":null,"url":null,"abstract":"Abstract To meet the needs of the airborne dispenser to disperse large-mass bullets, the dispersal system of large-size gasbag with multiple inlet nozzles was designed and built. The rationality and feasibility of the dispersal system were verified by the experimental study of the interior ballistic process. On this basis, the fluid–structure interaction method was used to simulate and analyze the process of the gasbag propelling the bullet when the number of inlet nozzles is different. The calculation results show that the final shape of the expanded gasbag is pillow shaped, and wrinkles appear at the ends of the long side and in the middle of the short side of the gasbag. The stress at the wrinkles is relatively large, and the stress on the wall of the gasbag with three inlet nozzles is greater than that on the wall of the gasbag with two inlet nozzles. Affected by the changes of flow field in the gasbag and the deformation of the gasbag, the process of the gasbag propelling the bullet is divided into two stages, and there are also two large fluctuation peaks during the change of the acceleration of the bullet. Moreover, the expansion process of gasbag with two inlet nozzles lags behind that of the gasbag with three inlet nozzles, and the maximum acceleration and separation velocity of the bullet are also relatively reduced by 2% and 3%, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Process of Dispersing the Bullet by a Large-Size Gasbag with Multiple Inlet Nozzles Based on the Fluid–Structure Interaction Method\",\"authors\":\"Jian Wang, Rui Liu, Kun Jiang, Daquan Song\",\"doi\":\"10.1007/s42405-023-00664-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To meet the needs of the airborne dispenser to disperse large-mass bullets, the dispersal system of large-size gasbag with multiple inlet nozzles was designed and built. The rationality and feasibility of the dispersal system were verified by the experimental study of the interior ballistic process. On this basis, the fluid–structure interaction method was used to simulate and analyze the process of the gasbag propelling the bullet when the number of inlet nozzles is different. The calculation results show that the final shape of the expanded gasbag is pillow shaped, and wrinkles appear at the ends of the long side and in the middle of the short side of the gasbag. The stress at the wrinkles is relatively large, and the stress on the wall of the gasbag with three inlet nozzles is greater than that on the wall of the gasbag with two inlet nozzles. Affected by the changes of flow field in the gasbag and the deformation of the gasbag, the process of the gasbag propelling the bullet is divided into two stages, and there are also two large fluctuation peaks during the change of the acceleration of the bullet. Moreover, the expansion process of gasbag with two inlet nozzles lags behind that of the gasbag with three inlet nozzles, and the maximum acceleration and separation velocity of the bullet are also relatively reduced by 2% and 3%, respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42405-023-00664-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42405-023-00664-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on the Process of Dispersing the Bullet by a Large-Size Gasbag with Multiple Inlet Nozzles Based on the Fluid–Structure Interaction Method
Abstract To meet the needs of the airborne dispenser to disperse large-mass bullets, the dispersal system of large-size gasbag with multiple inlet nozzles was designed and built. The rationality and feasibility of the dispersal system were verified by the experimental study of the interior ballistic process. On this basis, the fluid–structure interaction method was used to simulate and analyze the process of the gasbag propelling the bullet when the number of inlet nozzles is different. The calculation results show that the final shape of the expanded gasbag is pillow shaped, and wrinkles appear at the ends of the long side and in the middle of the short side of the gasbag. The stress at the wrinkles is relatively large, and the stress on the wall of the gasbag with three inlet nozzles is greater than that on the wall of the gasbag with two inlet nozzles. Affected by the changes of flow field in the gasbag and the deformation of the gasbag, the process of the gasbag propelling the bullet is divided into two stages, and there are also two large fluctuation peaks during the change of the acceleration of the bullet. Moreover, the expansion process of gasbag with two inlet nozzles lags behind that of the gasbag with three inlet nozzles, and the maximum acceleration and separation velocity of the bullet are also relatively reduced by 2% and 3%, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.