500 keV碳++离子辐照增强电化学合成NiFeS的结构性能

Ijabor Okeoghene Blessing, Haneef Shah, Shahbaz Afzal, Imosobomeh L. Ikhioya
{"title":"500 keV碳++离子辐照增强电化学合成NiFeS的结构性能","authors":"Ijabor Okeoghene Blessing, Haneef Shah, Shahbaz Afzal, Imosobomeh L. Ikhioya","doi":"10.1080/14328917.2023.2262315","DOIUrl":null,"url":null,"abstract":"ABSTRACTAn electrochemical approach was used to synthesise nickel iron sulphide (NiFeS) materials in this work. The prepared NiFeS underwent a thorough investigation, which included analyses of its optical, electrical, structural, morphological, elemental, and functional group properties. Cubic crystal formations with prominent peaks were visible from the structural pattern. Nanoflakes and pebbles were visible, and their elements were determined through elemental dispersive X-ray diffractometer (EDX) spectrum. The film’s crystallinity increased after incorporating carbon ions and its optical properties improved, with energy band gap values ranging from 1.50 eV to 1.15 eV as the peaks became more distinct. The materials produced could be utilised in the production of solar cells and optoelectronic devices. The electrical conductivity diminishes with increasing thickness. Carbon ion radiation increases carrier concentration, which increases electrical conductivity.Research highlightsNiFeS was irradiated using 500 keV carbon C++ ions beam irradiationNiFeS without irradiation has a bandgap of 1.50 eV, while the irradiated material had bandgaps between 1.35-1.15 eV.The film’s crystallinity was enhanced by incorporating carbon ionsNanogels and nanoflakes were seen in the micrographs of the unirradiated materials.KEYWORDS: NickelNiFeSions beamcarbonenergy bandgapirradiation Disclosure statementThe authors affirm no financial or interpersonal conflicts affected the research in this study.Data availability statementData can be given upon request.Authors’ credit statementIjabor Okeoghene Blessing, Haneef Shah, Imosobomeh L. Ikhioya: Conceptualisation, Methodology, Original Draft Writing, Imosobomeh L. Ikhioya and Shahbaz Afzal: software, and editing. Imosobomeh L. Ikhioya: Investigation and visualisation.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced structural properties of electrochemically synthesised NiFeS using 500 keV carbon C <sup>++</sup> ions irradiation\",\"authors\":\"Ijabor Okeoghene Blessing, Haneef Shah, Shahbaz Afzal, Imosobomeh L. Ikhioya\",\"doi\":\"10.1080/14328917.2023.2262315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTAn electrochemical approach was used to synthesise nickel iron sulphide (NiFeS) materials in this work. The prepared NiFeS underwent a thorough investigation, which included analyses of its optical, electrical, structural, morphological, elemental, and functional group properties. Cubic crystal formations with prominent peaks were visible from the structural pattern. Nanoflakes and pebbles were visible, and their elements were determined through elemental dispersive X-ray diffractometer (EDX) spectrum. The film’s crystallinity increased after incorporating carbon ions and its optical properties improved, with energy band gap values ranging from 1.50 eV to 1.15 eV as the peaks became more distinct. The materials produced could be utilised in the production of solar cells and optoelectronic devices. The electrical conductivity diminishes with increasing thickness. Carbon ion radiation increases carrier concentration, which increases electrical conductivity.Research highlightsNiFeS was irradiated using 500 keV carbon C++ ions beam irradiationNiFeS without irradiation has a bandgap of 1.50 eV, while the irradiated material had bandgaps between 1.35-1.15 eV.The film’s crystallinity was enhanced by incorporating carbon ionsNanogels and nanoflakes were seen in the micrographs of the unirradiated materials.KEYWORDS: NickelNiFeSions beamcarbonenergy bandgapirradiation Disclosure statementThe authors affirm no financial or interpersonal conflicts affected the research in this study.Data availability statementData can be given upon request.Authors’ credit statementIjabor Okeoghene Blessing, Haneef Shah, Imosobomeh L. Ikhioya: Conceptualisation, Methodology, Original Draft Writing, Imosobomeh L. Ikhioya and Shahbaz Afzal: software, and editing. Imosobomeh L. Ikhioya: Investigation and visualisation.\",\"PeriodicalId\":18235,\"journal\":{\"name\":\"Materials Research Innovations\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14328917.2023.2262315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2023.2262315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用电化学方法合成了硫化铁镍(NiFeS)材料。对制备的NiFeS进行了全面的研究,包括对其光学、电学、结构、形态、元素和官能团性质的分析。从结构图中可以看到具有突出峰的立方晶体结构。纳米薄片和鹅卵石可见,并通过元素色散x射线衍射(EDX)光谱测定其元素。加入碳离子后,薄膜的结晶度提高,光学性能得到改善,能带隙值在1.50 ~ 1.15 eV之间,峰更加明显。所生产的材料可用于生产太阳能电池和光电子器件。电导率随厚度的增加而降低。碳离子辐射增加载流子浓度,从而增加电导率。采用500 keV的碳C++离子束辐照snifes,未辐照的nifes带隙为1.50 eV,而辐照后的材料带隙为1.35 ~ 1.15 eV。在未辐照材料的显微照片中可以看到纳米凝胶和纳米薄片。关键词:镍离子束碳能带辐照披露声明作者确认本研究中没有经济或人际冲突影响研究。数据可用性声明可应要求提供数据。作者致谢:tijabor Okeoghene Blessing, Haneef Shah, Imosobomeh L. Ikhioya:概念化,方法论,原始草稿写作,Imosobomeh L. Ikhioya和Shahbaz Afzal:软件和编辑。Imosobomeh L. Ikhioya:调查和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced structural properties of electrochemically synthesised NiFeS using 500 keV carbon C ++ ions irradiation
ABSTRACTAn electrochemical approach was used to synthesise nickel iron sulphide (NiFeS) materials in this work. The prepared NiFeS underwent a thorough investigation, which included analyses of its optical, electrical, structural, morphological, elemental, and functional group properties. Cubic crystal formations with prominent peaks were visible from the structural pattern. Nanoflakes and pebbles were visible, and their elements were determined through elemental dispersive X-ray diffractometer (EDX) spectrum. The film’s crystallinity increased after incorporating carbon ions and its optical properties improved, with energy band gap values ranging from 1.50 eV to 1.15 eV as the peaks became more distinct. The materials produced could be utilised in the production of solar cells and optoelectronic devices. The electrical conductivity diminishes with increasing thickness. Carbon ion radiation increases carrier concentration, which increases electrical conductivity.Research highlightsNiFeS was irradiated using 500 keV carbon C++ ions beam irradiationNiFeS without irradiation has a bandgap of 1.50 eV, while the irradiated material had bandgaps between 1.35-1.15 eV.The film’s crystallinity was enhanced by incorporating carbon ionsNanogels and nanoflakes were seen in the micrographs of the unirradiated materials.KEYWORDS: NickelNiFeSions beamcarbonenergy bandgapirradiation Disclosure statementThe authors affirm no financial or interpersonal conflicts affected the research in this study.Data availability statementData can be given upon request.Authors’ credit statementIjabor Okeoghene Blessing, Haneef Shah, Imosobomeh L. Ikhioya: Conceptualisation, Methodology, Original Draft Writing, Imosobomeh L. Ikhioya and Shahbaz Afzal: software, and editing. Imosobomeh L. Ikhioya: Investigation and visualisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Innovations
Materials Research Innovations 工程技术-材料科学:综合
CiteScore
5.20
自引率
0.00%
发文量
38
审稿时长
2.8 months
期刊介绍: Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.
期刊最新文献
The impact of zinc ions on electrode material for energy storage in solvothermal-synthesised graphene-zinc oxide nanocomposites Enhanced non-enzymatic multicomponent detection via one-step hydrothermal synthesis of widely dispersed Zn-SnO2 nanoparticles on nitrogen-doped reduced graphene oxide Fluconazole adsorption and release study using KIT-6 for targeted and controlled drug delivery system Effect of precursor pH on the electrochemically synthesised barium titanium sulphide (BaTiS) material for photovoltaic application Hydroxyapatite coating of TiNi shape memory alloy via Electrophoretic Deposition (EPD)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1