一种新的模糊无监督特征学习方法

IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computational Intelligence and Applications Pub Date : 2023-09-26 DOI:10.1142/s146902682350027x
Ouiem Bchir, Mohamed Maher Ben Ismail
{"title":"一种新的模糊无监督特征学习方法","authors":"Ouiem Bchir, Mohamed Maher Ben Ismail","doi":"10.1142/s146902682350027x","DOIUrl":null,"url":null,"abstract":"The effectiveness of machine learning approaches depends on the quality of the data representation. In fact, some representations may mislead such learning approaches upon concealing relevant explanatory variables. Although feature engineering, that utilizes domain knowledge and/or expert supervision, yields typical data representation techniques, generic unsupervised feature learning represents an even more objective alternative to determine relevant attributes and generate optimal feature spaces. In this paper, we propose a new fuzzy unsupervised feature learning approach (FUL) that automatically derives new features by revealing the intrinsic structure of the data. In fact, FUL exploits the clusters and the associated fuzzy memberships generated by a fuzzy C-means algorithm, and devises new basis functions and their corresponding representation. The experiments results showed that FUL overtakes relevant state of the art approaches. It yielded the highest F1-measure with an improvement of 8%, 11%, 3%, and 4% on Parkinson, Epilepsy, Gait, and breast cancer datasets, respectively.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Fuzzy Unsupervised Feature Learning Approach\",\"authors\":\"Ouiem Bchir, Mohamed Maher Ben Ismail\",\"doi\":\"10.1142/s146902682350027x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of machine learning approaches depends on the quality of the data representation. In fact, some representations may mislead such learning approaches upon concealing relevant explanatory variables. Although feature engineering, that utilizes domain knowledge and/or expert supervision, yields typical data representation techniques, generic unsupervised feature learning represents an even more objective alternative to determine relevant attributes and generate optimal feature spaces. In this paper, we propose a new fuzzy unsupervised feature learning approach (FUL) that automatically derives new features by revealing the intrinsic structure of the data. In fact, FUL exploits the clusters and the associated fuzzy memberships generated by a fuzzy C-means algorithm, and devises new basis functions and their corresponding representation. The experiments results showed that FUL overtakes relevant state of the art approaches. It yielded the highest F1-measure with an improvement of 8%, 11%, 3%, and 4% on Parkinson, Epilepsy, Gait, and breast cancer datasets, respectively.\",\"PeriodicalId\":45994,\"journal\":{\"name\":\"International Journal of Computational Intelligence and Applications\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s146902682350027x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s146902682350027x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法的有效性取决于数据表示的质量。事实上,一些表征可能会在隐藏相关解释变量的情况下误导这种学习方法。虽然利用领域知识和/或专家监督的特征工程产生了典型的数据表示技术,但通用的无监督特征学习代表了确定相关属性和生成最佳特征空间的更客观的选择。在本文中,我们提出了一种新的模糊无监督特征学习方法(FUL),该方法通过揭示数据的内在结构来自动生成新的特征。实际上,FUL利用模糊c均值算法生成的聚类和相关模糊隶属度,设计出新的基函数及其相应的表示。实验结果表明,该方法超越了相关的最先进的方法。它在帕金森、癫痫、步态和乳腺癌数据集上分别提高了8%、11%、3%和4%,达到了最高的f1指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Fuzzy Unsupervised Feature Learning Approach
The effectiveness of machine learning approaches depends on the quality of the data representation. In fact, some representations may mislead such learning approaches upon concealing relevant explanatory variables. Although feature engineering, that utilizes domain knowledge and/or expert supervision, yields typical data representation techniques, generic unsupervised feature learning represents an even more objective alternative to determine relevant attributes and generate optimal feature spaces. In this paper, we propose a new fuzzy unsupervised feature learning approach (FUL) that automatically derives new features by revealing the intrinsic structure of the data. In fact, FUL exploits the clusters and the associated fuzzy memberships generated by a fuzzy C-means algorithm, and devises new basis functions and their corresponding representation. The experiments results showed that FUL overtakes relevant state of the art approaches. It yielded the highest F1-measure with an improvement of 8%, 11%, 3%, and 4% on Parkinson, Epilepsy, Gait, and breast cancer datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
25
期刊介绍: The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.
期刊最新文献
Software Effort Estimation Based on Ensemble Extreme Gradient Boosting Algorithm and Modified Jaya Optimization Algorithm Soybean Leaf Diseases Recognition Based on Generative Adversarial Network and Transfer Learning A Study of Digital Museum Collection Recommendation Algorithm Based on Improved Fuzzy Clustering Algorithm Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach Research on Fault Detection for Microservices Based on Log Information and Social Network Mechanism Using BiLSTM-DCNN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1