{"title":"稀土金属钐掺杂铁氧体及其生物医学应用的结构、形态、磁性和光学研究","authors":"Avinash Tripathi, Abhishek Nigam, S. J. Pawar","doi":"10.1080/10584587.2023.2227042","DOIUrl":null,"url":null,"abstract":"AbstractThe x-ray diffraction analysis manifested the single phases of Fe2O3, SmFeO3, and v SmFeO3 synthesized via sol-gel route. The Fe2O3, SmFeO3, and v SmFeO3 were hexagonal, orthorhombic, and cubic, respectively. The Debye-Scherer formula was used to calculate the average crystallite size of Fe2O3 (85.54 nm), SmFeO3 (67.65 nm), and v SmFeO3 (49.58 nm). The FESEM reveals near-spherical morphology with average particle sizes of 173, 114, and 161 nm, respectively. VSM analysis revealed the enhanced magnetic behavior of SmFeO3 and v SmFeO3 compared to Fe2O3. Antimicrobial activity against both E. coli and S. aureus bacteria justifies the biomedical application.Keywords: Antimicrobialferritesmagnetic nanoparticlessamariumrare earth material Disclosure StatementNo potential conflict of interest was reported by the author(s).AcknowledgmentsThe authors are grateful to the Centre for Interdisciplinary Research (CIR), MNNIT Allahabad, Prayagraj, and IIT Kanpur, for the characterization of the materials.Additional informationFundingThis work was supported by the Ministry of Education, Govt. of India, by giving an M. Tech. Fellowship.","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"15 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare Earth Metal Samarium Doped Ferrite and Its Structural, Morphological, Magnetic, and Optical Studies for Biomedical Applications\",\"authors\":\"Avinash Tripathi, Abhishek Nigam, S. J. Pawar\",\"doi\":\"10.1080/10584587.2023.2227042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe x-ray diffraction analysis manifested the single phases of Fe2O3, SmFeO3, and v SmFeO3 synthesized via sol-gel route. The Fe2O3, SmFeO3, and v SmFeO3 were hexagonal, orthorhombic, and cubic, respectively. The Debye-Scherer formula was used to calculate the average crystallite size of Fe2O3 (85.54 nm), SmFeO3 (67.65 nm), and v SmFeO3 (49.58 nm). The FESEM reveals near-spherical morphology with average particle sizes of 173, 114, and 161 nm, respectively. VSM analysis revealed the enhanced magnetic behavior of SmFeO3 and v SmFeO3 compared to Fe2O3. Antimicrobial activity against both E. coli and S. aureus bacteria justifies the biomedical application.Keywords: Antimicrobialferritesmagnetic nanoparticlessamariumrare earth material Disclosure StatementNo potential conflict of interest was reported by the author(s).AcknowledgmentsThe authors are grateful to the Centre for Interdisciplinary Research (CIR), MNNIT Allahabad, Prayagraj, and IIT Kanpur, for the characterization of the materials.Additional informationFundingThis work was supported by the Ministry of Education, Govt. of India, by giving an M. Tech. Fellowship.\",\"PeriodicalId\":13686,\"journal\":{\"name\":\"Integrated Ferroelectrics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10584587.2023.2227042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2227042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Rare Earth Metal Samarium Doped Ferrite and Its Structural, Morphological, Magnetic, and Optical Studies for Biomedical Applications
AbstractThe x-ray diffraction analysis manifested the single phases of Fe2O3, SmFeO3, and v SmFeO3 synthesized via sol-gel route. The Fe2O3, SmFeO3, and v SmFeO3 were hexagonal, orthorhombic, and cubic, respectively. The Debye-Scherer formula was used to calculate the average crystallite size of Fe2O3 (85.54 nm), SmFeO3 (67.65 nm), and v SmFeO3 (49.58 nm). The FESEM reveals near-spherical morphology with average particle sizes of 173, 114, and 161 nm, respectively. VSM analysis revealed the enhanced magnetic behavior of SmFeO3 and v SmFeO3 compared to Fe2O3. Antimicrobial activity against both E. coli and S. aureus bacteria justifies the biomedical application.Keywords: Antimicrobialferritesmagnetic nanoparticlessamariumrare earth material Disclosure StatementNo potential conflict of interest was reported by the author(s).AcknowledgmentsThe authors are grateful to the Centre for Interdisciplinary Research (CIR), MNNIT Allahabad, Prayagraj, and IIT Kanpur, for the characterization of the materials.Additional informationFundingThis work was supported by the Ministry of Education, Govt. of India, by giving an M. Tech. Fellowship.
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.