{"title":"干燥与均质相结合制备非晶纳米颗粒的研究","authors":"Yanchao Li, Haosen Zhang, Tianwei Zhang, Tao Liu","doi":"10.1080/07373937.2023.2272738","DOIUrl":null,"url":null,"abstract":"AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of drying processes combined with homogenization to produce amorphous nanoparticles\",\"authors\":\"Yanchao Li, Haosen Zhang, Tianwei Zhang, Tao Liu\",\"doi\":\"10.1080/07373937.2023.2272738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2272738\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2272738","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study of drying processes combined with homogenization to produce amorphous nanoparticles
AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.
期刊介绍:
Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics.
Articles in this multi-disciplinary journal cover the following themes:
-Fundamental and applied aspects of dryers in diverse industrial sectors-
Mathematical modeling of drying and dryers-
Computer modeling of transport processes in multi-phase systems-
Material science aspects of drying-
Transport phenomena in porous media-
Design, scale-up, control and off-design analysis of dryers-
Energy, environmental, safety and techno-economic aspects-
Quality parameters in drying operations-
Pre- and post-drying operations-
Novel drying technologies.
This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.