干燥与均质相结合制备非晶纳米颗粒的研究

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Drying Technology Pub Date : 2023-10-25 DOI:10.1080/07373937.2023.2272738
Yanchao Li, Haosen Zhang, Tianwei Zhang, Tao Liu
{"title":"干燥与均质相结合制备非晶纳米颗粒的研究","authors":"Yanchao Li, Haosen Zhang, Tianwei Zhang, Tao Liu","doi":"10.1080/07373937.2023.2272738","DOIUrl":null,"url":null,"abstract":"AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of drying processes combined with homogenization to produce amorphous nanoparticles\",\"authors\":\"Yanchao Li, Haosen Zhang, Tianwei Zhang, Tao Liu\",\"doi\":\"10.1080/07373937.2023.2272738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2272738\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2272738","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究旨在利用组合法制备低结晶度纳米颗粒。系统地研究了固态转变(不同的干燥工艺)和颗粒缩小(均质化)对药物溶出度的影响。选择不同x射线衍射晶体强度(相对高、中、低)的美洛昔康、吲哚美辛和萘普生作为模型。所有药物先用聚乙烯吡咯烷酮(PVP)和不加PVP进行处理,得到固体分散体,然后用高压均质法制备纳米混悬液。颗粒形态的改变可能是提高纳米化效率的重要因素。将冷冻干燥的萘普生与PVP复配,经过20次均质循环后,可获得最小粒径(188 nm)的萘普生。未加PVP的吲哚美辛和美洛昔康的溶出度与原料药相似。然而,均质后发现溶解性显著改善(高于纳米晶体)。PVP分散体对3种药物纳米颗粒的溶出度均大于83%。对于萘普生,纳米固体分散体虽然具有最小的尺寸和非晶态,但其溶解曲线与较大尺寸的纳米晶体相当。推测初始化合物的结晶强度较低可能是原因。两步法制备的吲哚美辛和美洛昔康纳米混悬液的溶出度较纳米晶和非晶固体分散体最佳。关键词:纳米非晶固体分散体结晶度尺寸聚乙烯吡咯烷酮披露声明作者未报告潜在利益冲突。刘涛感谢山东省重点研发计划(项目编号:。2019GSF107006)提供资金支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of drying processes combined with homogenization to produce amorphous nanoparticles
AbstractThis study aimed to produce nanoparticles with reduced crystallinity by using a combination method. The effect of solid-state transition (different drying processes) coupled with particle size reduction (homogenization) on drug dissolution was systematically investigated. Meloxicam, indomethacin and naproxen with different X-ray diffraction crystal intensity (relative high, medium and low) were selected as models. All drugs were first processed with and without polyvinylpyrrolidone (PVP) to obtain solid dispersions and then high pressure homogenization was used to produce nanosuspensions. Changes of particle morphology might be an important factor to improve the nanosizing efficiency. The smallest particle size (188 nm) could be obtained by using freeze-dried naproxen coupled with PVP after 20 homogenization cycles. Dissolution rates of processed indomethacin and meloxicam without PVP were found similar to their raw drugs. However, significant dissolution improvements were found after homogenization (higher than nanocrystals). Dissolution values of three drug nanoparticle achieved by using PVP dispersions were all higher than 83%. For naproxen, although nanosized solid dispersion possessed the smallest size and amorphous state, its dissolution curve was comparable to the larger sized nanocrystals. It was inferred that the relatively low crystal intensity of the initial compound could be the reason. Nanosuspensions of indomethacin and meloxicam prepared by using the two-step method showed optimized dissolution compared to their nanocrystals and amorphous solid dispersions.Keywords: Nanoamorphoussolid dispersionscrystallinitysizepolyvinylpyrrolidone Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingTao Liu would like to thank Shandong Provincial Key R&D Program (project no. 2019GSF107006) for the financial supports.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drying Technology
Drying Technology 工程技术-工程:化工
CiteScore
7.40
自引率
15.20%
发文量
133
审稿时长
2 months
期刊介绍: Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics. Articles in this multi-disciplinary journal cover the following themes: -Fundamental and applied aspects of dryers in diverse industrial sectors- Mathematical modeling of drying and dryers- Computer modeling of transport processes in multi-phase systems- Material science aspects of drying- Transport phenomena in porous media- Design, scale-up, control and off-design analysis of dryers- Energy, environmental, safety and techno-economic aspects- Quality parameters in drying operations- Pre- and post-drying operations- Novel drying technologies. This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.
期刊最新文献
Rice protein hydrolysates as natural emulsifiers for an effective microencapsulation of orange essential oil by spray drying Operational parameters optimization of convection air-drying with ultrasound pretreatment of Cyperus rotundus L. tubers by RSM Ultrasound-assisted drying of apples – process kinetics, energy consumption, and product quality Enhancing prior-knowledge-based control with deep attention neural network for outlet moisture content of cut-tobacco A critical review on developments in drying technologies for enhanced stability and bioavailability of pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1