Shulin Feng, Shuning Zhang, Mingming Xu, Guanlong Deng
{"title":"三维自动驾驶汽车的平行导航","authors":"Shulin Feng, Shuning Zhang, Mingming Xu, Guanlong Deng","doi":"10.14736/kyb-2023-4-0592","DOIUrl":null,"url":null,"abstract":"In this paper, parallel navigation is proposed to track the target in three-dimensional space. Firstly, the polar kinematics models for the vehicle and the target are established. Secondly, parallel navigation is derived by using polar kinematics models. Thirdly, cell decomposition method is applied to implement obstacle avoidance. Fourthly, a brief study is given on the influence of uncertainties. Finally, simulations are conducted by MATLAB. Simulation results demonstrate the effectiveness of the parallel navigation.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"438 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel navigation for 3-D autonomous vehicles\",\"authors\":\"Shulin Feng, Shuning Zhang, Mingming Xu, Guanlong Deng\",\"doi\":\"10.14736/kyb-2023-4-0592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, parallel navigation is proposed to track the target in three-dimensional space. Firstly, the polar kinematics models for the vehicle and the target are established. Secondly, parallel navigation is derived by using polar kinematics models. Thirdly, cell decomposition method is applied to implement obstacle avoidance. Fourthly, a brief study is given on the influence of uncertainties. Finally, simulations are conducted by MATLAB. Simulation results demonstrate the effectiveness of the parallel navigation.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"438 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2023-4-0592\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14736/kyb-2023-4-0592","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
In this paper, parallel navigation is proposed to track the target in three-dimensional space. Firstly, the polar kinematics models for the vehicle and the target are established. Secondly, parallel navigation is derived by using polar kinematics models. Thirdly, cell decomposition method is applied to implement obstacle avoidance. Fourthly, a brief study is given on the influence of uncertainties. Finally, simulations are conducted by MATLAB. Simulation results demonstrate the effectiveness of the parallel navigation.
期刊介绍:
Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences.
Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.