黎曼随机梯度下降下双曲神经网络的收敛性

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Communications on Applied Mathematics and Computation Pub Date : 2023-10-05 DOI:10.1007/s42967-023-00302-9
Wes Whiting, Bao Wang, Jack Xin
{"title":"黎曼随机梯度下降下双曲神经网络的收敛性","authors":"Wes Whiting, Bao Wang, Jack Xin","doi":"10.1007/s42967-023-00302-9","DOIUrl":null,"url":null,"abstract":"Abstract We prove, under mild conditions, the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model, both in batch gradient descent and stochastic gradient descent. We also discuss a Riemannian version of the Adam algorithm. We show numerical simulations of these algorithms on various benchmarks.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"42 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent\",\"authors\":\"Wes Whiting, Bao Wang, Jack Xin\",\"doi\":\"10.1007/s42967-023-00302-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove, under mild conditions, the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model, both in batch gradient descent and stochastic gradient descent. We also discuss a Riemannian version of the Adam algorithm. We show numerical simulations of these algorithms on various benchmarks.\",\"PeriodicalId\":29916,\"journal\":{\"name\":\"Communications on Applied Mathematics and Computation\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42967-023-00302-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00302-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要在温和的条件下,证明了一类双曲神经网络回归模型的riemanian梯度下降法在批量梯度下降和随机梯度下降下的收敛性。我们还讨论了亚当算法的黎曼版本。我们展示了这些算法在各种基准上的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent
Abstract We prove, under mild conditions, the convergence of a Riemannian gradient descent method for a hyperbolic neural network regression model, both in batch gradient descent and stochastic gradient descent. We also discuss a Riemannian version of the Adam algorithm. We show numerical simulations of these algorithms on various benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
期刊最新文献
On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws Stability Analysis and Performance Evaluation of Additive Mixed-Precision Runge-Kutta Methods A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids A New Class of Simple, General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems Conforming P3 Divergence-Free Finite Elements for the Stokes Equations on Subquadrilateral Triangular Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1