{"title":"基于机械方法的金属平底钻孔切削力和扭矩预测分析模型的建立","authors":"Nima Zoghipour, Yusuf Kaynak","doi":"10.1080/10910344.2023.2263867","DOIUrl":null,"url":null,"abstract":"AbstractBy far a large scale of industrial components is being manufactured from metallic materials. Most of these components possess holes in order to fulfill design and application requirements, such as assembly of screws, pins or passing channels for fluids. Depending on the utilized manufacturing method and positioning of these components during machining processes, these holes are being drilled even in vertical or inclined orientations with respect to the jig and fixturing systems. In vertical drilling of the flat surfaces conventional or indexable inserted drill are the commonly used tools. However, these types of tools do not demonstrate sufficient performance on the surfaces drilled holes due to the occurred run-out, vibrations when being used in inclined features. Therefore, flat bottom drills have been developed in order to be used for curved or inclined surfaces. Thus, optimization of the tool and components design requires a deeper knowledge on the cutting forces and torques when using flat bottom drills. In this study, a predictive analytical cutting force model is developed for flat bottom drills for both vertical and inclined plunging using mechanistic approach in Matlab. The model is established on the distributed elementally cutting along the tool radius considering both rake and relief faces based upon the orthogonal and oblique cut principles. Accordingly, the performance of the developed model for different cutting tools with various geometries and machining parameters have been evaluated and verified with experimental results of flat bottom drilling of brass alloy.Keywords: Bottom drillcutting forcesmechanistic force modelvertical-inclined drilling DISCLOSURE STATEMENTThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.FUNDINGThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069.Additional informationFundingThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a predictive analytical cutting force and torque model for flat bottom drilling of metals using mechanistic approach\",\"authors\":\"Nima Zoghipour, Yusuf Kaynak\",\"doi\":\"10.1080/10910344.2023.2263867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractBy far a large scale of industrial components is being manufactured from metallic materials. Most of these components possess holes in order to fulfill design and application requirements, such as assembly of screws, pins or passing channels for fluids. Depending on the utilized manufacturing method and positioning of these components during machining processes, these holes are being drilled even in vertical or inclined orientations with respect to the jig and fixturing systems. In vertical drilling of the flat surfaces conventional or indexable inserted drill are the commonly used tools. However, these types of tools do not demonstrate sufficient performance on the surfaces drilled holes due to the occurred run-out, vibrations when being used in inclined features. Therefore, flat bottom drills have been developed in order to be used for curved or inclined surfaces. Thus, optimization of the tool and components design requires a deeper knowledge on the cutting forces and torques when using flat bottom drills. In this study, a predictive analytical cutting force model is developed for flat bottom drills for both vertical and inclined plunging using mechanistic approach in Matlab. The model is established on the distributed elementally cutting along the tool radius considering both rake and relief faces based upon the orthogonal and oblique cut principles. Accordingly, the performance of the developed model for different cutting tools with various geometries and machining parameters have been evaluated and verified with experimental results of flat bottom drilling of brass alloy.Keywords: Bottom drillcutting forcesmechanistic force modelvertical-inclined drilling DISCLOSURE STATEMENTThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.FUNDINGThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069.Additional informationFundingThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2023.2263867\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2263867","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Development of a predictive analytical cutting force and torque model for flat bottom drilling of metals using mechanistic approach
AbstractBy far a large scale of industrial components is being manufactured from metallic materials. Most of these components possess holes in order to fulfill design and application requirements, such as assembly of screws, pins or passing channels for fluids. Depending on the utilized manufacturing method and positioning of these components during machining processes, these holes are being drilled even in vertical or inclined orientations with respect to the jig and fixturing systems. In vertical drilling of the flat surfaces conventional or indexable inserted drill are the commonly used tools. However, these types of tools do not demonstrate sufficient performance on the surfaces drilled holes due to the occurred run-out, vibrations when being used in inclined features. Therefore, flat bottom drills have been developed in order to be used for curved or inclined surfaces. Thus, optimization of the tool and components design requires a deeper knowledge on the cutting forces and torques when using flat bottom drills. In this study, a predictive analytical cutting force model is developed for flat bottom drills for both vertical and inclined plunging using mechanistic approach in Matlab. The model is established on the distributed elementally cutting along the tool radius considering both rake and relief faces based upon the orthogonal and oblique cut principles. Accordingly, the performance of the developed model for different cutting tools with various geometries and machining parameters have been evaluated and verified with experimental results of flat bottom drilling of brass alloy.Keywords: Bottom drillcutting forcesmechanistic force modelvertical-inclined drilling DISCLOSURE STATEMENTThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.FUNDINGThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069.Additional informationFundingThis work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 118C069
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining