{"title":"具有cattaneo - chri炉灶热流通量的MHD对流麦克斯韦纳米流体在多孔拉伸片上的活化能效应","authors":"N Jyothi, VIJAYA KUMAR AVULA GOLLA","doi":"10.1615/specialtopicsrevporousmedia.2023050008","DOIUrl":null,"url":null,"abstract":"The current article investigates the heat and mass transfer of convective MHD Maxwell nanofluid flow over a porous stretching sheet with Cattaneo-Christove heat flux. The influences of heat sources, radiation, and viscous dissipation are investigated. Also, the activation energy with binary chemical reaction and suction/injection are considered into the account. The dimensional governing equations are transmitted into non-dimensional form by similarity transformations. Further, the obtained mathematical model is solved numerically in MATLAB. The effect of physical parameters pertaining in flow regime are investigated through figures and tables. Fluid velocity enhances with the impact of magnetic field, porosity and suction parameters while the Brownian motion is significant with an improved values of heat generation and radiation, Fluid temperature declines with an upsurge values of thermal relaxation time. And Increasing thermophoresis and activation energy lead to an increase in the concentration whereas the opposite trend is seen for increasing chemical reaction. The Nussult number enhanced due to the larger values of thermal Grashof number, solutal Grashof number and Biot number whereas it declines with the escalating values of Brownian motion, thermophoresis and Eckert number. The comparison of the present results is carried out with the published results and noted a good agreement.","PeriodicalId":45135,"journal":{"name":"Special Topics & Reviews in Porous Media-An International Journal","volume":"293 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet\",\"authors\":\"N Jyothi, VIJAYA KUMAR AVULA GOLLA\",\"doi\":\"10.1615/specialtopicsrevporousmedia.2023050008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current article investigates the heat and mass transfer of convective MHD Maxwell nanofluid flow over a porous stretching sheet with Cattaneo-Christove heat flux. The influences of heat sources, radiation, and viscous dissipation are investigated. Also, the activation energy with binary chemical reaction and suction/injection are considered into the account. The dimensional governing equations are transmitted into non-dimensional form by similarity transformations. Further, the obtained mathematical model is solved numerically in MATLAB. The effect of physical parameters pertaining in flow regime are investigated through figures and tables. Fluid velocity enhances with the impact of magnetic field, porosity and suction parameters while the Brownian motion is significant with an improved values of heat generation and radiation, Fluid temperature declines with an upsurge values of thermal relaxation time. And Increasing thermophoresis and activation energy lead to an increase in the concentration whereas the opposite trend is seen for increasing chemical reaction. The Nussult number enhanced due to the larger values of thermal Grashof number, solutal Grashof number and Biot number whereas it declines with the escalating values of Brownian motion, thermophoresis and Eckert number. The comparison of the present results is carried out with the published results and noted a good agreement.\",\"PeriodicalId\":45135,\"journal\":{\"name\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/specialtopicsrevporousmedia.2023050008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Topics & Reviews in Porous Media-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/specialtopicsrevporousmedia.2023050008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet
The current article investigates the heat and mass transfer of convective MHD Maxwell nanofluid flow over a porous stretching sheet with Cattaneo-Christove heat flux. The influences of heat sources, radiation, and viscous dissipation are investigated. Also, the activation energy with binary chemical reaction and suction/injection are considered into the account. The dimensional governing equations are transmitted into non-dimensional form by similarity transformations. Further, the obtained mathematical model is solved numerically in MATLAB. The effect of physical parameters pertaining in flow regime are investigated through figures and tables. Fluid velocity enhances with the impact of magnetic field, porosity and suction parameters while the Brownian motion is significant with an improved values of heat generation and radiation, Fluid temperature declines with an upsurge values of thermal relaxation time. And Increasing thermophoresis and activation energy lead to an increase in the concentration whereas the opposite trend is seen for increasing chemical reaction. The Nussult number enhanced due to the larger values of thermal Grashof number, solutal Grashof number and Biot number whereas it declines with the escalating values of Brownian motion, thermophoresis and Eckert number. The comparison of the present results is carried out with the published results and noted a good agreement.