{"title":"木星月球探测任务的系统轨道设计","authors":"Tianji CHEN, Ming XU, Zhan FENG, Junjie REN","doi":"10.2322/tjsass.66.234","DOIUrl":null,"url":null,"abstract":"The Jovian moons have been visited by several flyby missions and are attracting more attention for long-term observation. However, because of Jupiter’s gravitational perturbations and the J2 and C2,2 terms of the Jovian moons, orbits around these moons are unstable, especially those orbits with high inclinations. This study considers a scenario in which the spacecraft flies at a high altitude equipped with a payload having a small field-of-view angle. The coverage rate is achieved by numerical integration, and the largest coverage rate can be found using the particle swarm optimization method. The results highlight the possibility of obtaining a greater coverage rate, as well as considerable imaging resolution and mission duration by choosing suitable candidate orbits. A station-keeping algorithm is introduced to produce a more accurate estimation of gravitational models that is indexed using the station-keeping cost and estimation accuracy. Based on the five aspects mentioned above, a systematic evaluation of candidate orbits was created for orbit design.","PeriodicalId":54419,"journal":{"name":"Transactions of the Japan Society for Aeronautical and Space Sciences","volume":"8 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Orbital Design for a Jovian Moon Exploring Mission\",\"authors\":\"Tianji CHEN, Ming XU, Zhan FENG, Junjie REN\",\"doi\":\"10.2322/tjsass.66.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Jovian moons have been visited by several flyby missions and are attracting more attention for long-term observation. However, because of Jupiter’s gravitational perturbations and the J2 and C2,2 terms of the Jovian moons, orbits around these moons are unstable, especially those orbits with high inclinations. This study considers a scenario in which the spacecraft flies at a high altitude equipped with a payload having a small field-of-view angle. The coverage rate is achieved by numerical integration, and the largest coverage rate can be found using the particle swarm optimization method. The results highlight the possibility of obtaining a greater coverage rate, as well as considerable imaging resolution and mission duration by choosing suitable candidate orbits. A station-keeping algorithm is introduced to produce a more accurate estimation of gravitational models that is indexed using the station-keeping cost and estimation accuracy. Based on the five aspects mentioned above, a systematic evaluation of candidate orbits was created for orbit design.\",\"PeriodicalId\":54419,\"journal\":{\"name\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/tjsass.66.234\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/tjsass.66.234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Systematic Orbital Design for a Jovian Moon Exploring Mission
The Jovian moons have been visited by several flyby missions and are attracting more attention for long-term observation. However, because of Jupiter’s gravitational perturbations and the J2 and C2,2 terms of the Jovian moons, orbits around these moons are unstable, especially those orbits with high inclinations. This study considers a scenario in which the spacecraft flies at a high altitude equipped with a payload having a small field-of-view angle. The coverage rate is achieved by numerical integration, and the largest coverage rate can be found using the particle swarm optimization method. The results highlight the possibility of obtaining a greater coverage rate, as well as considerable imaging resolution and mission duration by choosing suitable candidate orbits. A station-keeping algorithm is introduced to produce a more accurate estimation of gravitational models that is indexed using the station-keeping cost and estimation accuracy. Based on the five aspects mentioned above, a systematic evaluation of candidate orbits was created for orbit design.