多智能体信念PAC语义的可学习性

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Theory and Practice of Logic Programming Pub Date : 2023-07-01 DOI:10.1017/s1471068423000182
IONELA G. MOCANU, VAISHAK BELLE, BRENDAN JUBA
{"title":"多智能体信念PAC语义的可学习性","authors":"IONELA G. MOCANU, VAISHAK BELLE, BRENDAN JUBA","doi":"10.1017/s1471068423000182","DOIUrl":null,"url":null,"abstract":"Abstract The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"42 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learnability with PAC Semantics for Multi-agent Beliefs\",\"authors\":\"IONELA G. MOCANU, VAISHAK BELLE, BRENDAN JUBA\",\"doi\":\"10.1017/s1471068423000182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1471068423000182\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1471068423000182","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

演绎与归纳法之间的紧张关系可能是哲学、认知和人工智能等领域最根本的问题。在一篇有影响力的论文中,Valiant认识到学习的挑战应该与推理相结合。特别是,他提出了一种语义,用于捕获在逻辑中表述时可能近似正确(PAC)学习算法的输出所具有的质量。虽然比经典蕴涵弱,但它允许一个强大的模型理论框架来回答查询。本文为用多智能体认知逻辑来演示PAC学习提供了一个新的技术基础。为了规避文献中关于使用PAC语义进行稳健学习困难的负面结果,我们考虑了所谓的内隐学习,在这种学习中,我们能够将观察结果纳入背景理论,以决定认知查询的蕴涵。我们证明了学习过程的正确性,并讨论了样本复杂性的结果,即在给定用户指定的错误界限的情况下,我们需要多少个观察值来证明查询是必需的。最后,我们研究了在什么情况下该算法是有效的。最后一点,考虑到认知逻辑中的推理,特别是多智能体认知逻辑中的推理是pspace完全的,这个问题似乎没有希望。我们利用所谓的表征定理的一些最新成果,探索了单智能体和多智能体的认知逻辑,并使用唯一知道算子将模态推理简化为命题推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learnability with PAC Semantics for Multi-agent Beliefs
Abstract The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Practice of Logic Programming
Theory and Practice of Logic Programming 工程技术-计算机:理论方法
CiteScore
4.50
自引率
21.40%
发文量
40
审稿时长
>12 weeks
期刊介绍: Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.
期刊最新文献
Metric Temporal Equilibrium Logic over Timed Traces Multi-Shot Answer Set Programming for Flexible Payroll Management Unit Testing in ASP Revisited: Language and Test-Driven Development Environment Evaluating Datalog Tools for Meta-reasoning over OWL 2 QL Model Explanation via Support Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1