{"title":"电动汽车单输入双输出DC-DC变换器设计","authors":"Sankara Kumar S, Ramash Kumar K","doi":"10.1155/2023/3536608","DOIUrl":null,"url":null,"abstract":"DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Single Input Dual Output DC–DC Converter for Electric Vehicle Application\",\"authors\":\"Sankara Kumar S, Ramash Kumar K\",\"doi\":\"10.1155/2023/3536608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"10 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3536608\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3536608","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Design of Single Input Dual Output DC–DC Converter for Electric Vehicle Application
DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.