电动汽车单输入双输出DC-DC变换器设计

4区 工程技术 Q1 Mathematics Mathematical Problems in Engineering Pub Date : 2023-11-14 DOI:10.1155/2023/3536608
Sankara Kumar S, Ramash Kumar K
{"title":"电动汽车单输入双输出DC-DC变换器设计","authors":"Sankara Kumar S, Ramash Kumar K","doi":"10.1155/2023/3536608","DOIUrl":null,"url":null,"abstract":"DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Single Input Dual Output DC–DC Converter for Electric Vehicle Application\",\"authors\":\"Sankara Kumar S, Ramash Kumar K\",\"doi\":\"10.1155/2023/3536608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"10 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3536608\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3536608","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

DC-DC变换器在电动汽车的应用中起着至关重要的作用。在目前的电动汽车中,使用一个单独的DC-DC转换器为低压和高压电池充电。这些因素导致更高的输出电压波纹,更高的开关和器件传导损耗,所有这些都会影响EV性能。此外,以前的多端口变换器有更多的储能元件和开关器件用于电动汽车应用。为了解决这些问题,本文提出了一种用于电动汽车的多端口DC-DC转换器充电电路。该电路具有单输入双输出(SIDO)结构,由正输出升压变换器(POBC)和集成降压变换器(POBCIBC)组成。在这里,POBC用于升压,而降压转换器用于降压。POBC是由级联升压超级升力罗转换器组成的基本拓扑结构。与现有的多端口转换器相比,所设计的POBCIBC具有输出电压波动小、电压转移增益高、效率高、开关和传导损耗低、存储元件数量少、结构紧凑等优点。通过构建MATLAB/Simulink和原型模型,对POBCIBC在不同工况下的性能进行了测试。所提出的变换器根据其占空比变化产生不同的输出电压水平。结果表明,POBCIBC可以很好地应用于EV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Single Input Dual Output DC–DC Converter for Electric Vehicle Application
DC–DC converters are playing a vital in the electric vehicles (EVs) application. In current EVs, a separate DC–DC converter is used to charge both in the low voltage and the high-voltage batteries. These factors have resulted in higher output voltage ripples, higher switching and device conduction losses, all of which can have an impact on EV performance. In addition, the previous mulitport converters have more number of energy storage elements and switching devices for EV application. To address these issues, this article proposes a multiport DC–DC converter charging circuit for EVs. The proposed circuit has a single-input dual-output (SIDO) structure that consists of a positive output boost converter (POBC) with integration of buck converter (POBCIBC). Here, the POBC is used to stepping-up the voltage, while the buck converter is used to step-down the voltage. The POBC is a fundamental topology composed of Cascaded Boost Super Lift Luo Converters. The designed POBCIBC has several advantages such as reduced output voltage ripples, high-voltage transfer gain, proficient efficiency, lower switching and conduction losses, less number of storage components, and a compact structure over the existing multiport converters. The performance of the POBCIBC is tested at different operating conditions by constructing the MATLAB/Simulink and prototype models. The proposed converter has produced different output voltage levels based on their duty cycles variations. The results are presented to show the proficient POBCIBC for the EV application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Problems in Engineering
Mathematical Problems in Engineering 工程技术-工程:综合
CiteScore
4.00
自引率
0.00%
发文量
2853
审稿时长
4.2 months
期刊介绍: Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.
期刊最新文献
Flower Recognition Algorithm Based on Nonlinear Regression of Pixel Value On Spectral Radius and Energy of a Graph with Self-Loops Influence of Structural Parameters of Gearbox Seal System of Electrical Multiple Units on Seal Performance Implementation of Bioelectrical Impedance Measuring Instrument Based on Embedded System Analyzing Lower Limb Dynamics in Human Gait Using Average Value-Based Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1