{"title":"铂包埋Janus WSTe单层吸附和检测XO 2 (X = C, N和S)气体:第一性原理研究","authors":"Zhangze Ouyang, Zhou Huang, Hao Cui","doi":"10.1080/00268976.2023.2282169","DOIUrl":null,"url":null,"abstract":"AbstractFor sensing XO2 (X = C, N and S) gas species, this work purposes Pt-embedded WSTe monolayer, and using first-principles theory uncovers related gas adsorption properties and sensing mechanism. Results indicate that Pt-embedding is more energy favourable by replacing Te atom of the Janus WSTe monolayer with the formation energy of −1.78 eV, narrowing the bandgap to 0.926 eV. Besides, the Pt-WSTe monolayer performs weak physisorption upon CO2 with adsorption energy (Ead) of −0.17 eV, while strong chemisorption upon NO2 and SO2 with Ead of −1.43 and −1.17 eV, respectively. The analysis of electronic property uncovers the sensing potential of Pt-WSTe monolayer as a resistance-type NO2 or SO2 gas sensor with higher sensing response upon SO2, and the analysis of work function (WF) uncovers the sensing potential of Pt-WSTe monolayer as a WF-type NO2 or SO2 gas sensor with higher sensing response upon NO2. We are hopeful that the findings in this work can help to explore the possible application of Pt-WSTe monolayer in the gas sensing field and also to make some other explorations on Janus WSTe-based material for gas detections.KEYWORDS: Pt-WSTe monolayerfirst-principles theoryXO2gas sensing Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is supported by National Natural Science Foundation of China (No. 52207175).","PeriodicalId":18817,"journal":{"name":"Molecular Physics","volume":"13 2","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pt-embedded Janus WSTe monolayer for adsorption and detection of XO <sub>2</sub> (X = C, N and S) gases: a first-principles study\",\"authors\":\"Zhangze Ouyang, Zhou Huang, Hao Cui\",\"doi\":\"10.1080/00268976.2023.2282169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractFor sensing XO2 (X = C, N and S) gas species, this work purposes Pt-embedded WSTe monolayer, and using first-principles theory uncovers related gas adsorption properties and sensing mechanism. Results indicate that Pt-embedding is more energy favourable by replacing Te atom of the Janus WSTe monolayer with the formation energy of −1.78 eV, narrowing the bandgap to 0.926 eV. Besides, the Pt-WSTe monolayer performs weak physisorption upon CO2 with adsorption energy (Ead) of −0.17 eV, while strong chemisorption upon NO2 and SO2 with Ead of −1.43 and −1.17 eV, respectively. The analysis of electronic property uncovers the sensing potential of Pt-WSTe monolayer as a resistance-type NO2 or SO2 gas sensor with higher sensing response upon SO2, and the analysis of work function (WF) uncovers the sensing potential of Pt-WSTe monolayer as a WF-type NO2 or SO2 gas sensor with higher sensing response upon NO2. We are hopeful that the findings in this work can help to explore the possible application of Pt-WSTe monolayer in the gas sensing field and also to make some other explorations on Janus WSTe-based material for gas detections.KEYWORDS: Pt-WSTe monolayerfirst-principles theoryXO2gas sensing Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is supported by National Natural Science Foundation of China (No. 52207175).\",\"PeriodicalId\":18817,\"journal\":{\"name\":\"Molecular Physics\",\"volume\":\"13 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00268976.2023.2282169\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00268976.2023.2282169","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pt-embedded Janus WSTe monolayer for adsorption and detection of XO 2 (X = C, N and S) gases: a first-principles study
AbstractFor sensing XO2 (X = C, N and S) gas species, this work purposes Pt-embedded WSTe monolayer, and using first-principles theory uncovers related gas adsorption properties and sensing mechanism. Results indicate that Pt-embedding is more energy favourable by replacing Te atom of the Janus WSTe monolayer with the formation energy of −1.78 eV, narrowing the bandgap to 0.926 eV. Besides, the Pt-WSTe monolayer performs weak physisorption upon CO2 with adsorption energy (Ead) of −0.17 eV, while strong chemisorption upon NO2 and SO2 with Ead of −1.43 and −1.17 eV, respectively. The analysis of electronic property uncovers the sensing potential of Pt-WSTe monolayer as a resistance-type NO2 or SO2 gas sensor with higher sensing response upon SO2, and the analysis of work function (WF) uncovers the sensing potential of Pt-WSTe monolayer as a WF-type NO2 or SO2 gas sensor with higher sensing response upon NO2. We are hopeful that the findings in this work can help to explore the possible application of Pt-WSTe monolayer in the gas sensing field and also to make some other explorations on Janus WSTe-based material for gas detections.KEYWORDS: Pt-WSTe monolayerfirst-principles theoryXO2gas sensing Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is supported by National Natural Science Foundation of China (No. 52207175).
期刊介绍:
Molecular Physics is a well-established international journal publishing original high quality papers in chemical physics and physical chemistry. The journal covers all experimental and theoretical aspects of molecular science, from electronic structure, molecular dynamics, spectroscopy and reaction kinetics to condensed matter, surface science, and statistical mechanics of simple and complex fluids. Contributions include full papers, preliminary communications, research notes and invited topical review articles.