K-Fold交叉验证的渐近性

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence Research Pub Date : 2023-11-14 DOI:10.1613/jair.1.13974
Jessie Li
{"title":"K-Fold交叉验证的渐近性","authors":"Jessie Li","doi":"10.1613/jair.1.13974","DOIUrl":null,"url":null,"abstract":"This paper investigates the asymptotic distribution of the K-fold cross validation error in an i.i.d. setting. As the number of observations n goes to infinity while keeping the number of folds K fixed, the K-fold cross validation error is √ n-consistent for the expected out-of-sample error and has an asymptotically normal distribution. A consistent estimate of the asymptotic variance is derived and used to construct asymptotically valid confidence intervals for the expected out-of-sample error. A hypothesis test is developed for comparing two estimators’ expected out-of-sample errors and a subsampling procedure is used to obtain critical values. Monte Carlo simulations demonstrate the asymptotic validity of our confidence intervals for the expected out-of-sample error and investigate the size and power properties of our test. In our empirical application, we use our estimator selection test to compare the out-of-sample predictive performance of OLS, Neural Networks, and Random Forests for predicting the sale price of a domain name in a GoDaddy expiry auction.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"49 5","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of K-Fold Cross Validation\",\"authors\":\"Jessie Li\",\"doi\":\"10.1613/jair.1.13974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the asymptotic distribution of the K-fold cross validation error in an i.i.d. setting. As the number of observations n goes to infinity while keeping the number of folds K fixed, the K-fold cross validation error is √ n-consistent for the expected out-of-sample error and has an asymptotically normal distribution. A consistent estimate of the asymptotic variance is derived and used to construct asymptotically valid confidence intervals for the expected out-of-sample error. A hypothesis test is developed for comparing two estimators’ expected out-of-sample errors and a subsampling procedure is used to obtain critical values. Monte Carlo simulations demonstrate the asymptotic validity of our confidence intervals for the expected out-of-sample error and investigate the size and power properties of our test. In our empirical application, we use our estimator selection test to compare the out-of-sample predictive performance of OLS, Neural Networks, and Random Forests for predicting the sale price of a domain name in a GoDaddy expiry auction.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"49 5\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.13974\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1613/jair.1.13974","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了K-fold交叉验证误差在i - id条件下的渐近分布。当观察值n趋于无穷,同时保持K的折叠次数固定时,K-fold交叉验证误差与期望的样本外误差是√n一致的,并且具有渐近正态分布。导出了渐近方差的一致估计,并用于构造期望样本外误差的渐近有效置信区间。假设检验用于比较两个估计器的期望样本外误差,并使用子抽样程序来获得临界值。蒙特卡罗模拟证明了期望样本外误差的置信区间的渐近有效性,并研究了我们测试的大小和功率特性。在我们的实证应用中,我们使用我们的估计器选择测试来比较OLS、神经网络和随机森林的样本外预测性能,以预测GoDaddy到期拍卖中域名的销售价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotics of K-Fold Cross Validation
This paper investigates the asymptotic distribution of the K-fold cross validation error in an i.i.d. setting. As the number of observations n goes to infinity while keeping the number of folds K fixed, the K-fold cross validation error is √ n-consistent for the expected out-of-sample error and has an asymptotically normal distribution. A consistent estimate of the asymptotic variance is derived and used to construct asymptotically valid confidence intervals for the expected out-of-sample error. A hypothesis test is developed for comparing two estimators’ expected out-of-sample errors and a subsampling procedure is used to obtain critical values. Monte Carlo simulations demonstrate the asymptotic validity of our confidence intervals for the expected out-of-sample error and investigate the size and power properties of our test. In our empirical application, we use our estimator selection test to compare the out-of-sample predictive performance of OLS, Neural Networks, and Random Forests for predicting the sale price of a domain name in a GoDaddy expiry auction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
期刊最新文献
Collective Belief Revision Competitive Equilibria with a Constant Number of Chores Improving Resource Allocations by Sharing in Pairs A General Model for Aggregating Annotations Across Simple, Complex, and Multi-Object Annotation Tasks Asymptotics of K-Fold Cross Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1