ST8Sia2多唾液转移酶对克氏锥虫感染有保护作用

Bruno Rafael Barboza, Janaina Macedo da Silva, Lays Adrianne Mendonca Trajano-Silva, Vinicius de Morais Gomes, Deivid Martins Santos, Antonio Moreira Marques-Neto, Simon Ngao Mule, Juliana Borsoi, Carolina Borsoi Moraes, Martina Muhlenhoff, Walter Colli, Suely K N Marie, Lygia V Pereira, Maria Julia Manso Alves, Giuseppe Palmisano
{"title":"ST8Sia2多唾液转移酶对克氏锥虫感染有保护作用","authors":"Bruno Rafael Barboza, Janaina Macedo da Silva, Lays Adrianne Mendonca Trajano-Silva, Vinicius de Morais Gomes, Deivid Martins Santos, Antonio Moreira Marques-Neto, Simon Ngao Mule, Juliana Borsoi, Carolina Borsoi Moraes, Martina Muhlenhoff, Walter Colli, Suely K N Marie, Lygia V Pereira, Maria Julia Manso Alves, Giuseppe Palmisano","doi":"10.1101/2023.11.14.567071","DOIUrl":null,"url":null,"abstract":"Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which have important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"48 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi\",\"authors\":\"Bruno Rafael Barboza, Janaina Macedo da Silva, Lays Adrianne Mendonca Trajano-Silva, Vinicius de Morais Gomes, Deivid Martins Santos, Antonio Moreira Marques-Neto, Simon Ngao Mule, Juliana Borsoi, Carolina Borsoi Moraes, Martina Muhlenhoff, Walter Colli, Suely K N Marie, Lygia V Pereira, Maria Julia Manso Alves, Giuseppe Palmisano\",\"doi\":\"10.1101/2023.11.14.567071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which have important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"48 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.14.567071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.14.567071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖基化是细胞中结构和功能最多样化的共翻译修饰和翻译后修饰之一。聚糖的添加和去除,特别是在蛋白质和脂质上的添加和去除,是这一过程的特征,在几个生物过程中具有重要意义。在哺乳动物中,通过包括ST8Sia2在内的多唾液基转移酶,将唾液酸单位反复加到底层唾液酸(Sia)中,导致形成一种称为多唾液酸(polySia)的糖聚合物。多囊症的功能相关性已在神经系统中得到广泛证实。然而,多唾液酰化在感染中的作用仍然很少被探索。以前的报道表明,克氏锥虫(T.克氏锥虫)是一种引起恰加斯病(CD)的鞭毛寄生虫,可改变宿主唾液糖蛋白的酰化。为了了解宿主多囊虫在克氏锥虫感染过程中的作用,我们采用了计算机和实验相结合的方法。我们观察到克氏锥虫降低了ST8Sia2的表达和靶底物的多唾液化。我们还发现宿主ST8Sia2的化学和遗传抑制增加了哺乳动物细胞中的寄生虫负荷。这些发现提示了一种通过调节宿主多唾液化来干扰寄生虫感染的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi
Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which have important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exposure toPseudomonas spp.increasesAnopheles gambiaeinsecticide resistance in a population-dependent manner Impaired migration and metastatic spread of human melanoma by a novel small molecule targeting the transmembrane domain of death receptor p75NTR Transcriptomic reprogramming screen identifies SRSF1 as rejuvenation factor Cingulate cortex facilitates auditory perception under challenging listening conditions Extreme distributions in the preconfigured developing brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1