基于多组学数据的植物复杂性状预测

Peipei Wang, Melissa D Lehti-Shiu, Serena Lotreck, Kenia Segura Aba, Shin-Han Shiu
{"title":"基于多组学数据的植物复杂性状预测","authors":"Peipei Wang, Melissa D Lehti-Shiu, Serena Lotreck, Kenia Segura Aba, Shin-Han Shiu","doi":"10.1101/2023.11.14.566971","DOIUrl":null,"url":null,"abstract":"The mechanistic bases of complex traits are consequences of activities at multiple molecular levels. However, connecting genotypes and these activities to complex traits remains challenging. We built prediction models using genomic, transcriptomic, and methylomic data for six Arabidopsis traits. Single data-based models performed similarly but identified different benchmark genes. In addition, distinct genes contributed to trait prediction in different genetic backgrounds. Models integrating multi-omics data performed best and revealed gene interactions, extending knowledge about regulatory networks. These results demonstrate the feasibility of revealing molecular mechanisms underlying complex traits through multi-omics data integration.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of plant complex traits via integration of multi-omics data\",\"authors\":\"Peipei Wang, Melissa D Lehti-Shiu, Serena Lotreck, Kenia Segura Aba, Shin-Han Shiu\",\"doi\":\"10.1101/2023.11.14.566971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanistic bases of complex traits are consequences of activities at multiple molecular levels. However, connecting genotypes and these activities to complex traits remains challenging. We built prediction models using genomic, transcriptomic, and methylomic data for six Arabidopsis traits. Single data-based models performed similarly but identified different benchmark genes. In addition, distinct genes contributed to trait prediction in different genetic backgrounds. Models integrating multi-omics data performed best and revealed gene interactions, extending knowledge about regulatory networks. These results demonstrate the feasibility of revealing molecular mechanisms underlying complex traits through multi-omics data integration.\",\"PeriodicalId\":486943,\"journal\":{\"name\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"volume\":\"45 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv (Cold Spring Harbor Laboratory)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.14.566971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.14.566971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复杂性状的机制基础是多个分子水平活动的结果。然而,将基因型和这些活动与复杂性状联系起来仍然具有挑战性。我们利用基因组学、转录组学和甲基组学数据建立了6个拟南芥性状的预测模型。基于单一数据的模型表现相似,但鉴定出不同的基准基因。此外,在不同的遗传背景下,不同的基因有助于性状预测。整合多组学数据的模型表现最好,揭示了基因相互作用,扩展了对调控网络的了解。这些结果证明了通过多组学数据整合揭示复杂性状分子机制的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of plant complex traits via integration of multi-omics data
The mechanistic bases of complex traits are consequences of activities at multiple molecular levels. However, connecting genotypes and these activities to complex traits remains challenging. We built prediction models using genomic, transcriptomic, and methylomic data for six Arabidopsis traits. Single data-based models performed similarly but identified different benchmark genes. In addition, distinct genes contributed to trait prediction in different genetic backgrounds. Models integrating multi-omics data performed best and revealed gene interactions, extending knowledge about regulatory networks. These results demonstrate the feasibility of revealing molecular mechanisms underlying complex traits through multi-omics data integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exposure toPseudomonas spp.increasesAnopheles gambiaeinsecticide resistance in a population-dependent manner Impaired migration and metastatic spread of human melanoma by a novel small molecule targeting the transmembrane domain of death receptor p75NTR Transcriptomic reprogramming screen identifies SRSF1 as rejuvenation factor Cingulate cortex facilitates auditory perception under challenging listening conditions Extreme distributions in the preconfigured developing brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1